REPORT OF THE PLANNING OFFICER (PARK DIRECTION)

SUBJECT: CONSULTATION RESPONSE TO THE FIRST REVIEW OF THE REGIONAL TECHNICAL STATEMENT (RTS) FOR AGGREGATES

Purpose of this report

1. For Members to agree the Officer Response set out in Appendix 1 as the National Park Authority response to the above consultation by Welsh Government.

Background

1. Following from agreement at the National Park Authority Committee on the 11th December 2013, the Development Management Committee has delegated powers agree the National Park Authority response to the above consultation by Welsh Government.

2. Minerals Technical Advice Note 1: Aggregates (2004) (MTAN1) requires the preparation of a Regional Technical Statement for each Regional Aggregate Working Party (RAWP) area (North and South Wales) and it envisages that each RTS should be reviewed every five years. RTS’s for both north and south Wales were completed in 2008 and a draft first review of these documents is currently being consulted on. The draft review comprises a single document with two appendices, one for north Wales (Appendix A) and one for south Wales (Appendix B). The consultation period commenced on the 28th October and ends on 23rd December 2013. It is anticipated that final completion of the RTS will be in March/April 2014.

3. The RTS provides a strategy for the future supply of construction aggregates within the Region concerned, taking account the latest available information regarding the balance of supply and demand, and current notions of sustainability, including the proximity principle and environmental capacity principle. Specific recommendations are made to individual Mineral Planning Authorities (MPAs) regarding the quantities of aggregate which need to be supplied from each area (apportionments) and the total tonnage of any new allocations.

4. There are eighteen minerals planning authorities in the South Wales RAWP area. Each is required to make provision for the apportioned tonnages of

1 The proximity principle relates to the objective of minimising unnecessary transportation of bulk materials, such as construction aggregates, by ensuring that sources of supply (e.g. aggregate quarries) are located as close as possible to the main centres of demand (primarily centres of population).

2 The environmental capacity principle is that quarrying should be focussed, as far as possible, on areas which have the greatest capacity to ‘absorb’ the environmental impacts that are (or may be) associated with quarrying activity.
aggregate that are needed to satisfy the projected demand for aggregates in the region. However, there is also an aspiration to reduce and eventually cease minerals production in National Park locations, in accordance with Minerals Planning Policy Wales and MTAN1. As such, this MPA is not required to keep a land bank of minerals permissions, although operations within the Pembrokeshire Coast National Park currently provide a significant proportion of the sand and gravel supply in the South Wales RAWP.

5. In this respect, one of the key recommendations within the draft RTS in terms of improving future supply is to adjust the balance of apportionments and allocations for land-based sand and gravel provision within mid- and south west wales, as necessary, in order to find a longer term solution to the aspiration of reducing future production within the Pembrokeshire Coast National Park.

6. As such, the apportionments for Pembrokeshire Coast National Park, Pembrokeshire County Council, Carmarthenshire County Council and Ceredigion County Council have been combined within the draft RTS. This is to encourage collaborative working between these authorities to find alternative sites for sand and gravel provision, once existing National Park operations have ceased. If no environmentally acceptable alternatives can be found or the increased use of alternative aggregates such as marine sources is not sufficient, further allocations may be considered acceptable within the National Park in exceptional circumstances. These four minerals planning authorities are already taking forward future minerals planning of sand and gravel on this basis.

7. Each authority is also required to safeguard the economic resource of their plan area. The purpose is to prevent finite aggregate resources from being sterilised by inappropriate development which would prevent future generations from accessing it. The base data for safeguarding is presented in the recently published Aggregate Safeguarding Maps of Wales, 2012, published by the British Geological Survey on behalf of the Welsh Government. The authority’s constraints layer for development management purposes is currently being updated to reflect this new data. The proposals maps of the LDP will require updating at the next review.

Officer Response

8. The response set out in Appendix 1, in summary, comprises the following:

- Agreement on the methods used for calculating future supply and demand trends for construction aggregates within the South Wales RAWP;
- Support for the need to work collaboratively with neighbouring MPAs in order to find alternative sites for sand and gravel provision, outside of the National Park, and the resulting merging of the four MPAs apportionments to encourage this work;
- Correction of an error within the Pembrokeshire/Pembrokeshire Coast National Park section of Appendix 2, which refers to a joint Local Development Plan for the two authorities. It is advised that there are two
separate plans, although the National Park’s reserves have been included within the Pembrokeshire County Council Local Development Plan.

Recommendation:

1. That the Officer Response set out in Appendix 1 be agreed as the National Park Authority response to this consultation.

(For further information, please contact Richard James, Planning Officer (Park Direction), extension 4875)

Background documents:

Draft Regional Technical Statement 1st Review for the North Wales and South Wales Regional Aggregate Working Parties

Minerals Planning Policy Wales
http://wales.gov.uk/topics/planning/policy/minerals/?lang=en

Minerals Technical Advice Note 1: Aggregates
http://wales.gov.uk/topics/planning/policy/mineralstans/?lang=en
Appendix 1 – OFFICER RESPONSE

First Review - Public Consultation, October - December 2013

Guidance on responding to this consultation:

This document is designed for you to submit comments on the consultation draft of the First Review of the Regional Technical Statements for North Wales and South Wales, as published on 28th October 2013 on the Websites of the North Wales and South Wales Regional Aggregate Working Parties.

The First Review comprises the main document together with the Regional Appendix for North Wales (Appendix A) or South Wales (Appendix B), as appropriate. All three documents, together with an explanatory letter from the Welsh Government, are available to download from both RAWP Websites.

The Consultation process is open from 28th October to 23rd December 2013, inclusive.

If you would like to take part in the consultation, please save a copy of this survey form to your computer, complete your details within the box below, and then answer any or all of the questions which follow, depending on your area(s) of interest or concern. There is no need to answer all of the questions - you can leave the others blank.

To insert a response to any of the questions, just type anywhere within the grey sections. There is no word limit but it would be helpful if you could keep your responses as concise as possible.

When you have finished, simply save the document and then attach it to an email addressed to the author of the reports: alan.thompson@cuesta-consulting.com, by no later than 23rd December 2013.

All responses received by the deadline will be acknowledged, and the author might contact you for clarification unless you say otherwise in the box below.

All individual responses will be shared between the author and the Client Group (Welsh Government and the Technical Secretaries of the two RAWPs), but otherwise will be treated in the strictest confidence.

<table>
<thead>
<tr>
<th>Your Details:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your Name (optional): Richard James</td>
</tr>
<tr>
<td>Your involvement with the RTS process (e.g. mineral operator, planning officer, elected Member, other ‘formal’ stakeholder, member of the public): Planning officer</td>
</tr>
<tr>
<td>The Mineral Planning Authority area in which you are based, where applicable (see Fig. 3.1 in the report): Pembrokeshire Coast National Park Authority</td>
</tr>
<tr>
<td>Would you be happy for us to contact you for clarification, if required, at the email address you have used to submit your response? (Yes/no) Yes</td>
</tr>
</tbody>
</table>
General

Question 1: Overall, does the Draft First Review of the RTS help you to understand the issues involved in planning for future aggregates provision in Wales? (If not, please suggest any areas of improvement).

Your Answer: Yes

Executive Summary

Question 2: Are there any key issues or findings from the main document which are missing from the Executive Summary and which need adding?

Your Answer: No, the summary seems to adequately set the context for the document.

Chapter 1: The Purpose of the RTS

Question 3: Are there any aspects of the purpose of the RTS which you don’t understand after reading this chapter? Or any aspects with which you disagree? If so, please give details.

Your Answer: No.

Chapter 2: Key Principles and Approaches

Question 4: Are you happy with the key principles and approaches set out in this chapter? If not, please explain why and what, if anything, is missing.

Your Answer: Yes, the principles used in the more modern ‘Plan, Monitor and Manage’ approach appear logical.

Question 5: Having read the whole document, do you think these key principles have been adequately deployed in carrying out the revision? If not, please explain why.

Your Answer: Yes, from a National Park perspective, the long term aspiration to reduce and cease mineral provision within these areas remains a consistent priority throughout the document. The requirements of national planning policy, in relation to minerals development within National Parks, are considered to be complied with, with no obvious conflicts.

Chapter 3: Assessment of Demand

Question 6: Are you happy with the approach that has been taken to assess the likely future demand for land-based primary aggregates in Wales? If not, please explain why and what improvements might be considered.

Your Answer: Yes, modifying the approach to account for the abnormal recession climate of recent years is supported. As such, the use of historical sales data for the last 10 years, whilst taking into account potential future influences is considered to be reliable. The overall conclusion to resist modifying the overall scale of future demand, as indicated by the historical baseline data, after having taken other potential influences into account is supported.
Question 7: Are you happy with the validity of the findings of this assessment, either for individual MPAs or for the Region or Country as a whole? If not, please give details.

Your Answer: Yes

Chapter 4: Analysis of the Existing Supply Pattern

Question 8: Are you happy with the explanation that is given in this chapter of the existing patterns of supply across Wales as a whole? If not, please explain your concerns. *(But please note that any concerns regarding details within your particular Region can be dealt with in response to the additional questions (15 to 20) relating to the two Regional Appendices).*

Your Answer: Yes.

Chapter 5: Future Apportionments and Allocations

Question 9: Are you happy with the apportionments set out in Table 5.1 and the supporting text? If not, please explain your concerns, either for individual MPAs or for Wales as a whole.

Your Answer: Yes, the merging of apportionments highlights the need for collaborative working between Pembrokeshire Coast National Park and the three other MPAs, which will need to commence in the near future in order to move towards the long term aspiration for National Park areas.

Question 10: Are you happy with the details relating to surpluses / shortfalls in Tables 5.2 and 5.3 and the supporting text? If not, please explain your concerns, either for individual MPAs or for Wales as a whole.

Your Answer: Yes.

Question 11: More specifically, do you agree with the logic of excluding dormant and suspended sites from the basic landbank calculations (subject to the reserves at these sites being available to offset any allocation requirements, where necessary, as explained in paragraph 5.19). If you disagree, please explain why.

Your Answer: Yes.

Question 12: Are you happy with the details noted in paragraphs 5.20 and 5.21, which give individual MPAs some flexibility to depart from RTS recommendations. If not, please explain why.

Your Answer: Yes, in addition to the inherent flexibility this emphasises the strategic purpose of the RTS.

Chapter 6: Consultation Process

Question 13: Do you think that the consultation process, as explained in this chapter, and including this survey, is adequate and fit for purpose? If not, please explain what improvements you would like to see for this or future reviews.

Your Answer: Yes.
Glossary of Terms

Question 14: Are the definitions given in this Glossary sufficiently clear and accurate? If not, please provide details of any perceived shortcomings.

Your Answer: Yes

Appendix A: North Wales

Question 15: Do you have any detailed local knowledge which would help to improve or challenge any of the details given within paragraphs A1 to A46 of Appendix A? If so, please provide details.

*Your Answer: ...

Question 16: Do you have any detailed local knowledge which would help to improve the factual information given within Tables A3 to A5? If so, please provide details.

*Your Answer: ...

Question 17: Do you have any detailed local knowledge which would help to improve or challenge any of the information given for individual MPAs on pages 12 to 24 of Appendix A? If so, please provide details.

*Your Answer: ...

Appendix B: South Wales

Question 18: Do you have any detailed local knowledge which would help to improve or challenge any of the details given within paragraphs B1 to A68 of Appendix B? If so, please provide details.

Your Answer: No

Question 19: Do you have any detailed local knowledge which would help to improve the factual information given within Tables B3 to B5? If so, please provide details.

Your Answer: No

Question 20: Do you have any detailed local knowledge which would help to improve or challenge any of the information given for individual MPAs on pages 19 to 50 of Appendix B? If so, please provide details.

*Your Answer: In relation to Pembrokeshire/Pembrokeshire Coast National Park, p39, it is stated that the two authorities have a joint development plan. This is incorrect as each authority has its own plan, although the National Park’s reserves have been included within the Pembrokeshire County Council LDP’s land bank calculations.

And Finally ...

Question 21: Do you think this first Review of the RTS is likely to be helpful in moving further towards a more sustainable system of quarrying in Wales, in the years ahead? If not, please explain why.

Your Answer: Yes
Question 22: If you are closely involved with implementing the Local Development Plan process in Wales, do you think the revised RTS is likely to be helpful in guiding and informing that process? If not, please explain what improvements you’d like to see.

Your Answer: Yes.

Question 23: ... and are there any other comments you would like to make relating to any aspect of the RTS Review?

Your Answer: No further comments to make.
To: Consultees on the Review of the Regional Technical Statements for Aggregates

CC: Chairs of the North and South Wales Regional Aggregates Working Parties
Secretaries of the North and South Wales Regional Aggregates Working Parties

Eich cyf : Your ref
Ein cyf : Our ref
Dyddiad : Date 28 October 2013

Dear Colleagues

First Review of the Regional Technical Statements for Aggregates

This letter accompanies the consultation on revised Regional Technical Statements for Aggregates. It seeks to clarify certain matters relating to the consultation exercise and should be read in conjunction with previous advice on the status of the Regional Technical Statements at http://wales.gov.uk/topics/planning/policy/dear-cpo-letters/regional-technical-statements-for-aggregates-review/?lang=en

Minerals Technical Advice Note 1: Aggregates (2004) (MTAN 1) requires the preparation of a Regional Technical Statement in each Regional Aggregate Working Party (RAWP) area. The RTS documents are an important part of ensuring that an adequate supply of primary aggregates can be maintained, which meets local, regional and UK needs.

MTAN 1 envisages that each RTS should be reviewed every five years. Therefore, revised draft Statements have been developed with advice from a Steering Group comprising members of the north and south Wales RAWPs, which includes Local Authority, Welsh Government, Mineral Products Association, British Aggregates Association and Natural Resources Wales representatives. The revised draft has also been presented to both RAWPs for further technical input. The stage of the process now reached is that of formal consultation and comments are sought from a wider range of stakeholders prior to final endorsement by local authorities and by Welsh Government.

MTAN 1 provides the parameters for the review. In relation to some of these parameters certain assumptions have been made in developing the revised RTS documents. These assumptions have been made for good reason, based on the expertise of the steering group and primarily relate to the assessment of demand (the use of the past 10 year sales
average) and to the calculation of landbanks (dormant sites have been excluded from the calculation). Comments are invited on the appropriateness of the assumptions made in the revised documents. Depending on the outcomes of consultation, a decision will be taken on whether subsequent clarification of MTAN 1 is necessary and appropriate.

The RTS documents represent an important outcome of collaborative working on minerals and I expect they will continue be used in a positive manner in taking forward a strategic and sustainable approach to mineral planning for aggregates in Wales. I would urge you, therefore, to view this consultation exercise as an important opportunity to put forward your comments and influence how national planning policy on aggregates should be delivered.

Yours sincerely

ROSEMARY THOMAS
Chief Planner/Deputy Director
Department for Housing and Regeneration

Prif Gynlluniwr/Dirprwy Gyfarwyddwr
Adran Tai ac Adfywio
Regional Technical Statements
for the North Wales and South Wales
Regional Aggregate Working Parties

(1st Review)
Main Document

(Consultation Draft, October 2013)

Prepared, on behalf of the Welsh Government and the North Wales and South Wales Regional Aggregate Working Parties, by

Cuesta Consulting Limited
CONTENTS

Foreword..1
Statement from the Welsh Government..3
Executive Summary..4

1. The Purpose of the RTS...6
 Introduction...6
 Sustainability Objectives...6
 The Scope and Purpose of RTS Recommendations..7

2. Key Principles and Approaches...9
 The RTS Process...9
 The Proximity Principle...10
 Environmental Capacity...11
 Changing the Pattern of Supply...12

3. Assessment of Demand..14
 Approach..14
 Historical Sales Data..15
 Influences on Future Demand..18
 Regional Demand..27
 National Demand..28
 Assessment of Reserves and Landbanks..28

4. Analysis of the Existing Supply Pattern..31
 Introduction...31
 National and Regional Analysis..32
 Sub-Regional Analysis of Supply Patterns..45

5. Future Apportionments and Allocations...46
 Introduction...46
 Suggested Apportionments...46
 Comparison with Existing Landbanks..49
 Allocations Required to Meet Shortfalls..50

6. Consultation Process..55
Foreword

By Martin Hooker, Chair of the South Wales Regional Aggregates Working Party

Since the original Regional Technical Statements (RTS) were issued in October 2008, forward planning for minerals has formed an intrinsic part of the Local Development Plan (LDP) process. The LDPs have benefited from the clear direction the RTS has provided on the new sustainable approach to mineral development in Wales. Several LDPs have now been adopted in South Wales and all have embraced the principal objectives of the RTS to provide adequate reserves of aggregate for the construction and other industries in the most sustainable manner reasonably achievable.

It is particularly satisfying to see certain elements of the RTS, such as the safeguarding of mineral resources, now enshrined in development plans to ensure such resources are protected for future generations. More importantly, new allocations, defined areas of search and preferred areas have also been incorporated into some LDPs.

This First Review of the RTS has been prepared, on behalf of the North Wales and South Wales RAWPs with advice and peer review from a Steering Group which included representatives from both Regional Aggregate Working Parties (RAWPs), the Mineral Products Association, the British Aggregates Association, Natural Resources Wales and the Welsh Government. The Steering Group provided vital technical information, updating and refining that given in previously published RAWP reports and in the original Regional Technical Statements. The Steering Group also provided or confirmed expert judgement, where this was called for in situations where precise factual detail was not available, and has provided a consensus endorsement of the various recommendations.

The First Review RTS covers the 25 year period up to 2036, but further reviews will still be initiated every 5 years, in accordance with MTAN1, to ensure that it can react to any significant change in circumstances, such as the recent deep recession which has informed this review. This will ensure that any major changes to supply and demand can be addressed and the RTS changed or modified as appropriate. This process underpins the plan, monitor and manage approach to aggregate planning in the UK.

The new edition will continue to be considered as a strategic document for the purposes of Local Development Plan preparation and may be a material consideration in the development control process. I remain confident that all authorities will continue to embrace and implement the recommendations of the revised RTS in their development plans on a voluntary basis, and that WG will not need to have recourse to its powers of direction.

I would like to take this opportunity to gratefully acknowledge the considerable amount of work that has been undertaken to complete the First Review, which includes the significant efforts of the RTS steering group and the diligent work of the consultant appointed to undertake and complete the work on schedule on behalf of the Welsh Government, and the participation of elected Members and other key stakeholders.
The First Review has built on the foundation of the original RTS. It provides a strong and improved statement of the desire to ensure that sustainability is at the heart of all future mineral planning in Wales.

Martin Hooker

Chair of the South Wales Regional Aggregates Working Party.

October 2013
Statement from the Welsh Government

Text to be added, following consultation, once the final RTS has been approved by the RAWPs and Member Forums

... to comprise an explicit statement (from the Minister) confirming the status of the RTS and its relationship to National Policy on minerals (MPPW) and Aggregates (MTAN 1), and confirming the Welsh Government’s endorsement of the RTS as the outcome of regional collaborative working.

... The statement should also include a brief explanation of the role of the RAWPs in providing technical input to the process - complementing the observations made in the Foreword - and of the role of each Member Forum in providing political endorsement at a local level.
Executive Summary

Minerals Technical Advice Note 1: Aggregates (2004) (MTAN 1) requires the preparation of Regional Technical Statements (RTS) for the areas covered by both the North Wales and South Wales Regional Aggregates Working Parties (RAWPs). Whereas MTAN1 develops the national policy set out in Minerals Planning Policy Wales (MPPW), the RTSs provide the supporting detail which allows this to be implemented. This document and its two Regional Appendices are the outcome of the first review and revision of the original RTSs.

The new (‘First Review’) edition of each RTS comprises this main document and the corresponding Regional Appendix for North Wales or South Wales, which are issued separately. Together, they provide a strategy for the future supply of construction aggregates within the Region concerned, taking account of the latest available information regarding the balance of supply and demand, and current notions of sustainability, including the proximity principle and environmental capacity. It must be emphasised that the RTS documents and the recommendations within them are of a strategic nature. They are not intended to provide site-specific information or guidance.

The RTSs thus provide recommendations to each Mineral Planning Authority (MPA) regarding the quantities of aggregate which need to be supplied from their area (apportionments) and the total tonnage of any new allocations (areas for future working) which may need to be made in their Local Development Plan (LDP) to ensure that adequate provision is maintained throughout the relevant Plan Period.

The First Review has identified the historical pattern of demand upon each individual MPA for the production of land-based primary aggregates, based on average sales over a 10 year ‘baseline’ period (2001 to 2010, inclusive). The review of factors relating to the availability of alternative materials, imports, exports and economic growth has suggested that this historical supply pattern is likely to provide a good guide for the determination of future apportionments, both in terms of overall quantities and in terms of broad geographical distribution. No evidence was found of economic factors which would suggest otherwise.

The review has also found that, in most areas, the existing pattern of supply is sensibly balanced in terms of proximity and environmental capacity, within the restrictions imposed by the distribution of workable resources and the requirements of economic and commercial viability. In those areas, the recommended apportionments are guided purely by the historical sales data. However, the review has also identified some areas where there might be merits in adjusting the apportionments and allocations, and thereby slightly modifying the future supply pattern in order to improve sustainability. Specific recommendations are made to this effect for each MPA.

Where it is justified by new evidence, it remains open for individual MPAs to depart from the apportionment and allocation figures recommended by the RTS. In doing so, however, an MPA would need to demonstrate that their intended departure would not undermine the overall strategy provided by the RTS itself (e.g. by working together with other MPAs to...

1 The RTS process deals only with aggregates and therefore excludes data relating to the production of other related products such as cement, building stone, silica sand and industrial limestone.
ensure that sub-regional and regional totals are still achieved) and this would be likely to become a key issue at Examination and/or Public Inquiry.

Where the local authorities involved are unable to reach agreement, or if individual local authorities do not accept the Regional Technical Statement, the Welsh Government will, as a last resort, consider its default powers to intervene in the planning process (MTAN 1, paragraph A3).

As with the original RTS documents, at this broad level and given the detailed analysis that will be required to implement the RTS through Local Development Plans, it was not considered appropriate or required that Strategic Environmental Assessment (SEA) or Health Impact Assessment (HIA) should be conducted as part of the First Review.
1. **The Purpose of the RTS**

Introduction

1.1 Minerals Technical Advice Note 1: Aggregates (2004) (MTAN 1) requires the preparation of Regional Technical Statements (RTS) for the areas covered by both the North Wales and South Wales Regional Aggregates Working Parties (RAWPs). Whereas MTAN1 develops the national policy set out in Minerals Planning Policy Wales (MPPW), the RTSs provide the supporting detail which allows this to be implemented.

1.2 This First Review of the original RTS documents comprises this main document and the Regional Appendices for North Wales and South Wales, which are issued separately. The two components of the new RTS for each Region (i.e. the main document and the relevant Appendix) are intended to provide a strategy for the future supply of construction aggregates within that Region, taking account of the latest available information regarding the balance of supply and demand, and current notions of sustainability (see below). Together, the two revised RTSs aim to ensure that an adequate and steady supply of aggregates can be maintained throughout Wales (and beyond, in the case of materials that are exported), taking into account the key objectives of sustainable supply outlined in MTAN 1.

Sustainability Objectives

1.3 The fundamental requirements for sustainability in Wales are enshrined within both legislation (Government of Wales Act 2006) and in Policy (Minerals Planning Policy Wales (2000). In line with these requirements, the overarching objective in planning for aggregates provision, as set out in paragraph 7 of MTAN1 is “to ensure supply is managed in a sustainable way so that the best balance between environmental, economic and social considerations is struck, while making sure that the environmental and amenity impacts of any necessary extraction are kept to a level that avoids causing demonstrable harm to interests of acknowledged importance”.

1.4 Subsidiary objectives in paragraph 29 of MTAN1, which relate to delivering a more sustainable pattern of supply include:

- examining very carefully existing reserves on a national and regional basis to see if they are adequate in the short, medium and long term;
- only granting permission for future extraction to take place in the most environmentally acceptable locations, in accord with development plans that are informed by the Regional Technical Statement which in turn is based on the environmental capacity assessment;
- actively reducing the proportion of primary aggregates used in relation to secondary, recycled or waste materials;
- minimising the transportation of aggregates by road;
- seeking self-sufficiency within regions, thereby avoiding the need to transfer the environmental costs of aggregates extraction to other areas; and
The careful and continual assessment of existing and anticipated future exports of aggregates to areas outside Wales (in consultation with those importing regions outside Wales) to determine whether that supply is the best environmental and practicable option for all.

The Scope and Purpose of RTS Recommendations

1.5 Each RTS provides a mechanism for encouraging the national sustainability objectives to be met by the individual Mineral Planning Authorities (MPAs) within each Region over a period of up to 25 years (for crushed rock) or 22 years, in the case of land-based sand & gravel (sufficient to cover the MTAN1 requirements for maintaining minimum landbanks of 10 years and 7 years, respectively, throughout the full 15-year term of each LDP).

1.6 The Regional Appendix for each RTS provides more specific recommendations to the constituent MPAs regarding the quantities of aggregate which need to be supplied from each area (apportionments) and the nature and size of any allocations which may need to be made in their Local Development Plan (LDP) to ensure that adequate provision is maintained throughout the relevant Plan Period. Paragraph 50 of MTAN1 specifically requires the relevant parts of the RTS strategy to be incorporated into individual LDPs.

1.7 It must be emphasised, however, that each RTS, and the recommendations within it are of a strategic nature. The documents are not intended to provide site-specific information or guidance. It is for the individual MPAs to determine how the strategic requirements identified in the new RTS should be met within their areas. This includes identifying site allocations (where these are required by the RTS or, in some cases, by other local factors), and setting out corresponding policies within their LDPS to guide the Development Management process for future mineral extraction.

1.8 Moreover, where it is justified by new (e.g. more up to date, more detailed or more precise) evidence, it is open for individual MPAs to depart from the apportionment and allocation figures recommended by the new RTS when preparing their LDP policies. In doing so, however, an MPA would need to demonstrate that their intended departure would not undermine the overall strategy provided by the RTS itself (e.g. by working together with other MPAs to ensure that sub-regional and regional totals are still achieved) and this would be likely to become a key issue at Examination and/or Public Inquiry. Where the local authorities involved are unable to reach agreement, or if individual local authorities do not accept the revised Regional Technical Statement, the Welsh Government will, as a last resort, consider its default powers to intervene in the planning process (MTAN 1, paragraph A3).

1.9 For each Region, the RTS recommendations are informed by the analysis of:

- available resources, reserves, sales and landbanks of primary land-won aggregates;
- the availability and supply of marine, secondary and recycled materials;
levels of demand upon the region for the supply of aggregates, including exports;
levels of imports of aggregate into the region;
the proximity principle, in relation to the transportation of aggregates; and
the environmental capacity of areas to accept the impacts of future quarrying

1.10 Further details of the key principles and approaches used within this analysis are set out in the next chapter.

1.11 Several of the terms used above (e.g. apportionments, allocations, landbanks, reserves and resources) have very specific meanings with respect to minerals planning, which need to be understood. These are all defined in the Glossary of Terms at the back of this report.
2. **Key Principles and Approaches**

The RTS Process

2.1 A key principle which underpins the overall approach within the RTS and MTAN1 is the need to move away from the old, demand-led system of ‘*Predict and Provide*’ to the more modern concept of ‘*Plan, Monitor and Manage*’. These terms originated in relation to the planning for housing provision but can also be applied to minerals.

2.2 It is important to recognise, however, that the Plan, Monitor and Manage system still depends, crucially, on an assessment of demand. At the heart of MTAN1 is the aspiration that, once a reasonable estimate of demand has been obtained, any subsequent fluctuations above that level should be accommodated by increased supplies from secondary and recycled sources, rather than being seen as a justification for granting new planning permissions for primary aggregate extraction. Whilst that aspiration is widely supported, there is evidence to suggest that the percentage contribution available from secondary and recycled sources, having risen from around 10% of the total aggregates market in the 1990s to around 28% in 2010 (as a direct result of financial incentives and promotional work to increase acceptability) is now likely to have peaked. As a consequence of this, the future use of recycled/secondary materials is likely to depend mainly on the level of future construction output (since the availability of recycled materials is closely dependent on rates of new construction). It is therefore perhaps more reasonable to assume that secondary and recycled aggregates will continue to provide a high proportion of total aggregate production, but will not be able to be relied upon to fulfil any future peaks in demand on their own: there may also need to be increased contributions from primary aggregate sources.

2.3 The RTS process supports this approach by investigating the likely continued availability of secondary and recycled aggregates from all available sources within each area, and factoring this in to an assessment of the residual demand for land-based primary aggregates, as informed primarily by historical sales data. That residual level of demand is then translated into *apportionments* for each local authority, subject to the consideration of other sustainability issues including proximity and environmental capacity (see below).

2.4 An important tool in the ongoing management of the supply of aggregates is the monitoring of *landbanks*. A landbank, as defined in paragraph 45 of MTAN1, is the stock of planning permissions for the winning and working of minerals at *active* and *inactive* sites², at any given point in time and for a given area. Where there is an insufficient landbank of permitted reserves in a particular area to meet the identified demand, over a sustained period of time, the RTS recommends the need for *allocations* for future working to be identified in LDPs. Provided that the reserves at *dormant* sites have not already been included in the landbank

² Detailed definitions of active, inactive, dormant and suspended sites are given in the *Glossary of Terms* at the back of this report, as are the full definitions of resources, reserves, apportionments, landbanks, allocations and provision.
calculations\(^3\), and where a Mineral Planning Authority considers that such reserves are likely to be capable of being worked within the relevant period (subject to the agreement of modern conditions) it is suggested here that these may be offset against the requirement for new allocations. The same logic applies to sites where permission has been suspended, following a stalled IDO or ROMP review (see Glossary for full explanations of these various terms).

2.5 Thereafter, by virtue of the Plan-led approach, additional applications for new reserves are unlikely to be granted except within allocated sites, unless there are compelling reasons why fluctuations in demand cannot be met from those sites or from alternative (secondary and recycled) sources. The situation is monitored annually by the RAWPs and managed, as required, through periodic (5-yearly) revisions of the Regional Technical Statements.

2.6 In terms of its overall approach, the RTS concept represents an important modification of the more general Managed Aggregate Supply System (MASS) which had previously operated across both England & Wales for many years. The main difference is that the Welsh system explicitly seeks to incorporate two key principles of sustainability with respect to aggregates supply: the proximity principle and the notion of environmental capacity, as explained below.

The Proximity Principle

2.7 This relates simply to the objective of minimising unnecessary transportation of bulk materials, such as construction aggregates, by ensuring that sources of supply (e.g. aggregate quarries) are located as closely as possible to the main centres of demand (primarily centres of population and major infrastructure projects). The original Regional Technical Statements aimed to accomplish this by providing ‘per capita’ apportionments for future aggregate provision (i.e. proportionate to the population within a given area, as a surrogate for the likely distribution of demand). In this revision of the RTSs, consideration has been given instead to variations in population density, but account has also then been taken of a range of other influences, including access routes and transport distances, which neither population nor population density figures are able to reflect. This analysis has, necessarily, been of a qualitative nature because of the complexities involved, and to avoid the spurious precision associated with quantitative analysis. Further details are given in Chapter 4 and in the Regional Appendices.

2.8 The proximity principle is also modified by recognition that certain types of ‘high specification aggregate’ (HSA) serve quite different markets and are therefore required for distribution over much greater distances (Thompson, Greig & Shaw, 1993; Thompson et al., 2005). This applies especially to the skid-resistant aggregates derived from the Pennant Sandstones of South Wales (and to a lesser extent from a range of other formations within Powys and elsewhere in Wales), which are essential for road surfacing applications throughout England and Wales.

\(^3\) There are differences of interpretation (of MTAN1 guidance) regarding whether or not the reserves at dormant sites should be included in landbank calculations that are used for the purpose of assessing the need, or otherwise, for new allocations. As explained in the Glossary, for the purposes of this review, such reserves, and those at suspended sites, have been excluded.
Separate consideration also needs to be given to the issue of high purity limestone production for use as a metallurgical flux, for chemical production and for the manufacture of cement. Whilst these are all non-aggregate end-uses, they are frequently produced from the same geological resources as crushed rock aggregates, but the quarry locations may be determined or justified primarily by the requirements for the higher value industrial products.

Environmental Capacity

2.9 By comparison, the notion of environmental capacity is a more controversial issue. The basic principle is clear enough: i.e. that quarrying should be focused, as far as possible, on areas which have the greatest capacity to ‘absorb’ the environmental impacts that may be associated with quarrying activity, and thus to contribute to future supply with a minimum of adverse impacts. The controversy derives from the lack of consensus in terms of how ‘environmental capacity’ should be defined, and from the way in which the concept was used in the original RTSs.

2.10 In Wales, two previous research projects provided the evidence base for the system that is currently used: **EMAADS** (Establishing a Methodology for Assessing Aggregates Demand and Supply - Arup, 2004) and **IMAECA** (Implementing the Methodology for Assessing the Environmental Capacity for primary Aggregates - Enviros, 2005). These projects resulted in a set of ‘traffic light’ maps (as they are often referred to) being produced to indicate areas of relatively high (green), medium (amber) and relatively low (red) environmental capacity. The thresholds between these categories were arbitrarily set, but the differentiation between them does at least provide a starting point for the consideration of environmental capacity and thereby enables nationally consistent strategic decisions to be made, by the RAWPs, with respect to future aggregates provision.

2.11 The colours shown on these maps reflect combined scores from the assessment of twelve different ‘national environmental indicators’ for each square kilometre. These comprised:

(i) Settlements
(ii) Roads
(iii) Land Use
(iv) SSSIs
(v) Heritage
(vi) Public Enjoyment
(vii) Landscape
(viii) Local Landscape
(ix) Watercourses
(x) Spheres of Influence
(xi) Existing Workings
(xii) Cumulative Effects
2.12 It is important to understand that the IMAECA tool was designed to be used only to inform the Regional Technical Statements and explicitly not to be used directly in Local Development Plans, Development Management processes and decisions or planning appeal decisions.

2.13 However, despite this information being available, and being described for each MPA within the original RTSs, the environmental capacity results from the IMAECA study had no influence at all on setting the apportionment figures within those reports. That may partially have been due to concerns about not prejudging matters that should properly fall to be dealt with through the Local Development Plan process. This certainly applies to any site-specific judgements but, at a more strategic level, there is both scope and wide support for environmental capacity data to inform and potentially influence the bigger picture.

2.14 The consideration of Environmental Capacity at this strategic level deliberately avoids the direct use of more detailed ‘primary’ environmental information such as the locations of individual designations (other than National Parks and AONBs). Once again, this is to avoid being site-specific and to avoid prejudging issues which need to be addressed in more detail through LDP and Development Management processes at a local level.

Changing the Pattern of Supply

2.15 Important consideration also needs to be given to existing patterns of supply. MTAN 1 suggests that these patterns are largely a historical residual and ‘...*will need to gradually change to reflect current notions of sustainability*’. That may, or may not be the case, however, since the historical supply patterns already have much to commend them: they reflect the spatial distribution of available resources (which is of fundamental importance, since minerals can only be worked where they are found) and the economic imperative of industry to establish quarries as close as possible to areas of demand (in order to minimise transport costs). Over many decades, quarries which have become uneconomic because of changing demand or outdated transport networks and rising costs have naturally fallen into disuse. Those which remain are generally (though not always) well-placed to serve the current markets.

2.16 Together, the implementation of the proximity principle and the notion of environmental capacity, as described above, may gradually induce changes to the existing patterns of supply, but only if it is found that, once all aspects of sustainability are taken into account, alternative patterns are seen to have clear advantages over those which currently exist. Any such change cannot be immediate, since (unless Prohibition Orders are issued) existing quarries will be able to continue until their existing planning permissions expire and/or until they run out of permitted reserves.

2.17 Nevertheless, the RTS can help to influence future changes in supply pattern, where this is found to be desirable, by adjusting the apportionments given to individual MPAs. This, in turn, will then help to focus new allocations in the areas required, and should eventually result in a shift towards a more sustainable
pattern of supply. Chapter 4 of this report presents an overview of the existing supply pattern, highlighting the need for limited adjustments in certain areas, drawing on the more detailed analyses presented in the two Regional Appendices (A and B).
3. **Assessment of Demand**

Approach

3.1 The starting point for the apportionment of future supply requirements for construction aggregates in Wales is to make an assessment of the likely future demand.

3.2 In 2004, MTAN 1 (paragraph 20) initially provided an estimate of likely future demand for all construction aggregates across Wales of 23 million tonnes per annum (mtpa). Taking into account the expected economic growth in Wales, at that time, it was anticipated that the total demand for aggregates would not exceed 23-27 mtpa by 2010. Paragraph 24 of MTAN1 further noted that the proportions of overall primary aggregates production within South Wales and North Wales have remained consistent (63% and 37%, respectively), for many years. As previously noted, MTAN 1 requires that targets for the production of alternative aggregates (i.e. secondary aggregates, recycled materials and marine-dredged aggregates) should be ‘top-sliced’ leaving a residual demand for land-won primary aggregates. It also envisages that any unexpected increase in demand beyond the estimated range should be accommodated, as necessary, by increased production from alternative aggregate sources, in preference to being used as a justification for new permitted reserves of land-based primary aggregates.

3.3 As required by MTAN1, the first generation of Regional Technical Statements set about to reassess future demand. Attempts were made to consider changes in overall demand, and in the proportional contributions that could be made from secondary, recycled and marine aggregate sources. However, for the purposes of identifying future apportionments, the main focus was on estimating the future demand for land-won primary aggregate in each region. This was done on the basis of historical sales figures (Method A) and on a ‘per Capita’ basis (Method B). In each case, the forecasts were based on average production data over a three-year baseline period (2003-2005) with and without a modest (1%pa) level of growth being applied for the period to 2010 (remaining constant thereafter).

3.4 For the purpose of the present analysis, a number of options were considered, in full consultation with the project Steering Group. Given that actual demand has fallen significantly in recent years, the estimates of demand set out in MTAN1 were considered to be unrealistic, except as an upper bound figure. It was also considered that any attempt to forecast future demand through detailed econometric analysis would offer little (if any) advantage, given the uncertainties associated with such work and the unprecedented nature of the recent prolonged economic recession. It was considered essential, however, for there to be some form of realistic ‘top-down’ analysis, in order to avoid the shortfalls in provision that would almost inevitably arise from a purely ‘bottom-up’ approach based only on local assessments.

3.5 The preferred approach was to base the assessment of the likely future demand for land-based primary aggregate on historical sales data, taking a longer-term (10
year) baseline period to span a range of conditions before and after the onset of the recent recession. It was agreed that the starting assumption would be that the average annual future demand, over the whole of the period covered by the RTS, would be equivalent to the average annual sales over the baseline period. It was also agreed, however, that this sales-based analysis would need to be modified by taking broad account of any anticipated changes in future economic conditions (e.g. GDP projections, population forecasts, housing growth and major infrastructure projects), and any likely changes in the availability of alternative aggregate sources (marine, secondary and recycled aggregates). All of these factors are likely to vary from one part of Wales to another, and can therefore most usefully be considered at the scale of an individual MPA or at least at a sub-regional, rather than regional or national level. It is at the MPA level, therefore, where the analysis begins. Figure 3.1 illustrates the distribution of MPAs in Wales and their relationship to the two RAWPs. The MPAs include the three National Park Authorities.

Historical Sales Data

3.6 Historical sales figures are published in the annual reports issued by each of the RAWPs. The data is supplied in confidence by the individual mineral operators to the relevant MPA, and is then collated by the RAWP secretaries for the purpose of publication. In some cases, this published data is available for individual MPAs but, in other cases (where there are less than three quarry operators within a given MPA), the data for two or more authorities have to be grouped together in order to maintain confidentiality.

3.7 For the purposes of this review it was suggested by industry representatives on the Steering Group that, rather than relying upon such combined data, in order to determine future apportionments for each individual MPA it would be desirable to know the historical sales figures by individual MPAs. Whilst this could not be done for individual years without breaching confidentiality, the RAWP secretaries agreed that it would be possible to issue sales data for each MPA when averaged over a 10-year period (2001 to 2010), since different combinations of individual quarries would have been active at different times during that period. The resulting 10-year averages, refined in a few cases by other public domain information to provide a more detailed breakdown, are presented in Table 3.1, below.

3.8 The Regional sub-totals and the overall National total shown in Table 3.1 correspond very closely to the Regional and National averages obtained directly from the data published in the annual RAWP reports for this period (see Tables 3.3 and 3.4, later in this chapter), but the new breakdown by MPA is more refined and provides an improved baseline for assessing future demand and apportionments.
Figure 3.1: The Distribution of Mineral Planning Authorities (MPAs) between the two Regional Aggregate Working Parties (RAWPs) in Wales

[Map showing the distribution of MPAs between North Wales and South Wales RAWPs]
Table 3.1: 10-year average historical sales figures for land-based primary aggregate production in Wales, 2001 - 2010

<table>
<thead>
<tr>
<th>Mineral Planning Authority</th>
<th>Land-won Sand & Gravel Aggregates (mtpa)</th>
<th>Crushed Rock Aggregates (mtpa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrexham</td>
<td>0.58</td>
<td>0</td>
</tr>
<tr>
<td>Flintshire</td>
<td>0.31</td>
<td>2.94</td>
</tr>
<tr>
<td>Denbighshire</td>
<td>0.02</td>
<td>0.89</td>
</tr>
<tr>
<td>Conwy + Snowdonia NPA</td>
<td>0</td>
<td>1.23</td>
</tr>
<tr>
<td>Anglesey</td>
<td>0</td>
<td>0.38</td>
</tr>
<tr>
<td>Gwynedd</td>
<td>0.17</td>
<td>0.37</td>
</tr>
<tr>
<td>Sub-totals, North Wales</td>
<td>1.08</td>
<td>5.80</td>
</tr>
<tr>
<td>Ceredigion</td>
<td>0.14</td>
<td>0.20</td>
</tr>
<tr>
<td>Pembrokeshire</td>
<td>0</td>
<td>0.55</td>
</tr>
<tr>
<td>Pembrokeshire Coast NPA</td>
<td>0.16</td>
<td>0.29</td>
</tr>
<tr>
<td>Carmarthenshire</td>
<td>0*</td>
<td>1.07</td>
</tr>
<tr>
<td>Swansea</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neath Port Talbot</td>
<td>0.03</td>
<td>0.59</td>
</tr>
<tr>
<td>Powys</td>
<td></td>
<td>2.51</td>
</tr>
<tr>
<td>Bridgend</td>
<td>0</td>
<td>0.75</td>
</tr>
<tr>
<td>Brecon Beacons NPA</td>
<td>0</td>
<td>0.55</td>
</tr>
<tr>
<td>Merthyr Tydfil</td>
<td>0</td>
<td>0.27</td>
</tr>
<tr>
<td>Vale of Glamorgan</td>
<td>0</td>
<td>1.09</td>
</tr>
<tr>
<td>Rhondda Cynon Taf</td>
<td>0</td>
<td>0.69</td>
</tr>
<tr>
<td>Cardiff</td>
<td>0</td>
<td>0.86</td>
</tr>
<tr>
<td>Caerphilly</td>
<td>0</td>
<td>0.76</td>
</tr>
<tr>
<td>Blaenau Gwent</td>
<td>0</td>
<td>0.17</td>
</tr>
<tr>
<td>Torfaen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Newport</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monmouthshire</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>Sub-totals, South Wales</td>
<td>0.33</td>
<td>10.47</td>
</tr>
<tr>
<td>TOTALS Wales</td>
<td>1.41</td>
<td>16.27</td>
</tr>
</tbody>
</table>

SOURCE: Collated by the RAWP secretaries from MPA data, and refined in some cases from public domain information (e.g. planning applications, Inspectors’ reports and LDP documents) to provide a more detailed or updated breakdown. Lists of individual sites within each Region are given in the Regional Appendices (A and B).

*The figure for sand & gravel production in Carmarthenshire is more than zero, but too small to be shown to two decimal places.

3.9 The historical sales figures presented above effectively represent the demand that has been placed upon each MPA, in terms of aggregates required within those areas and elsewhere, including exports between the two Regions and to England. Further observations relating to the geographical variations indicated by the sales figures are given in each of the Regional Appendices.
3.10 It is important to note that the historical sales figures also represent only the *residual demand* for land-based primary aggregates, since the overall demand was also satisfied, in part, by supplies from secondary, recycled and marine aggregate sources, as well as by small amounts of imports from primary aggregate sources in England.

3.11 By default, therefore, using historical sales data as a basis for estimating future demand assumes that the supply of secondary, recycled and marine aggregates will continue as before (with different levels of contribution from each source in each of the various MPAs). It also assumes that the factors influencing the overall scale of construction activity will remain broadly unchanged.

3.12 In practice, however, these assumptions may be incorrect and adjustments may therefore need to be made in order to reflect changes in any of these factors which are considered likely to affect actual demand in future years. These are examined below.

Influences on Future Demand

3.13 Factors which could potentially influence changes in the future demand for land-based primary aggregates, compared with the baseline period, are considered below, under three main headings:

- **supply factors** (relating to the continued availability of alternative materials);
- **import/export factors**; and
- **demand factors** (relating to influences on overall construction activity).

3.14 In each case, the observations which follow (summarised from the more detailed assessments given in the Regional Appendices, A and B) relate to the anticipated changes compared to the average conditions over the 2001-2010 baseline period, and they relate only to the reasonably foreseeable future (no more than 10 years), since longer-term predictions are likely to be increasingly unreliable.

3.15 It is important that these observations are kept under review and adjusted each time the RTS is revised.

Anticipated Changes in Supply Factors

Secondary Aggregates

3.16 Secondary aggregates comprise the by-products of various industrial processes, including metallurgical slags and power station arisings, but also the by-products from certain types of non-aggregate mineral extraction, such as colliery spoil and slate waste, and from the recycling of glass, ceramics, asphalt planings and rail ballast.

4 It might appear more logical to group these recycled materials with aggregates produced from recycled construction, demolition and excavation wastes (CD&EW). However, the coverage of CD&EW is already well defined in terms of survey returns, so those items are included here as secondary aggregates.
3.17 Aggregate production from metallurgical slags occurs only in South Wales. Port Talbot continues to produce both blast furnace (iron) and steel slag, whilst the processing of older stockpiles of blast furnace slag also continues at the former Llanwern steel works (which ceased new production in 2001). Secondary aggregates are produced from all of these materials. At present there are no indications that the total quantity of aggregate produced at either of these sites will change in the foreseeable future, and therefore no foreseen implications for changes in the demand for primary aggregates.

3.18 Coal-fired power station arisings, comprising pulsed fuel ash (p.f.a) and furnace bottom ash (f.b.a) are currently produced only at the Aberthaw Power Station, in South Wales. It is understood that the utilisation of p.f.a is likely to increase, but that the quantities are small and the use is only for relatively low-grade end uses.

3.19 Small amounts of aggregate minerals (sandstone and occasionally sand) arise adventitiously from the reworking of former colliery spoil tips or from the working of opencast coal. The amounts and their suitability for use as construction aggregates are highly unpredictable, however, and quantities can vary greatly over time. Many former colliery waste tips in Wales have either been landscaped as part of reclamation schemes or utilised for base fill material. Volumes still available are very limited in North Wales but more significant in parts of the South Wales coalfield. The overall potential for producing aggregate from this material is considered to be small, for a combination of local, fiscal and regulatory reasons, but could be locally significant, particularly within Torfaen and Blaenau Gwent. Here, there may be opportunities for the material to make up for the very limited existing and potential sources of primary aggregate production, although the quality of the material and the quantities available for anything other than low grade fill, have yet to be demonstrated.

3.20 Sandstone arisings from new opencast workings have been important as ‘windfall’ resources at a number of sites within the South Wales coalfield, but these are classed as primary aggregates and are therefore not considered further here.

3.21 Crushed slate, derived either from slate waste (as a by-product of roofing material production) or quarried specifically for use as aggregate, features significantly in the overall pattern of supply with in North Wales (particularly in Gwynedd), but not in South Wales. Slate is included in the overall figures for crushed rock production within the North Wales RAWP reports and, over the 10-year baseline period, has accounted for up to 16.2% of total crushed rock sales in the region, with evidence of a rising trend in both proportion and actual sales up to a peak in 2007. Although output has fallen during the recent recession, the proportions have remained high, suggesting an underlying increase in the market for slate aggregate. However, given that slate production is already included in the crushed rock statistics, this trend has no implications for the overall level of future demand for primary aggregates, only for the balance between slate and other types of crushed rock.
3.22 The various sources of secondary aggregate noted above, together with recycled aggregates, as discussed below, are currently exempt from the Aggregates Levy, in a deliberate attempt to minimise the use of primary aggregates.

3.23 In August 2013, HMRC announced that a European Commission investigation into certain exemptions and reliefs contained within the aggregates levy was being undertaken to determine whether or not these amounted to ‘State Aid’ (Revenue & Customs Brief 24/13). In September 2013, HMRC further announced that it was taking steps to suspend the application of those elements of the levy that now form the subject matter of the formal EC investigation because it is obliged to do so under Article 108(3) of the Treaty on the Functioning of the European Union (Revenue & Customs Brief 27/13). Most recently, on 10th October 2013, HMRC announced that it intends to make a number of previously exempt materials taxable from 1 April 2014 (Revenue & Customs Brief 30/13). Of particular relevance to Wales, these materials include slate, shale, colliery spoil and (perhaps) aggregates made from metallurgical slag. Final details of these suspensions are currently awaited but the implication is that they could have significant implications for the balance between primary and alternative aggregates, whether for a temporary period or on a permanent basis, depending on the outcome of the formal investigation. These implications have not yet had chance to be factored into the following analysis.

Recycled Aggregates

3.24 Aggregates produced from the recycling of construction, demolition and excavation wastes (CD&EW) form an important contribution to the overall supply of construction aggregates. The 2008 RTSs identified a total output for the whole of Wales of 3.97mt, based on 2005 survey data, and suggested a roughly 3 to 1 split between South Wales and North Wales, based on earlier surveys and population ratios. They also noted that, despite the lack of quantitative detail, it is inevitable that the greatest volumes of CD&EW arisings and usage are in the urban areas. The RTS documents emphasised, however, that all statistics for this sector need to be used with a high degree of caution, because of the low rate of response to the surveys.

3.25 The situation, in terms of available data, has not improved since the original RTSs were published. No new survey data is available, so any observations on recent or future trends can only be regarded as broad approximations. If anything, the efficiency of recycling is likely to have increased, and the introduction of WRAP’s (2005) ‘Quality Protocol’ for the production of aggregates from inert waste may have increased the proportion and usage of higher value products derived from the various recycled sources. Such improvements, however, represent only small increments on the progress which had previously been made - primarily as a consequence of the price advantages resulting from the landfill tax and, to a lesser extent, the aggregates levy. The industry view is that there is little opportunity for significant further increase in the proportion of construction aggregate likely to be derived from this sector. As noted earlier, the future availability of recycled aggregates seems likely to be inextricably linked to the overall rates of
construction activity and economic growth, so the safest assumption is that it will rise and fall in a very similar way to overall demand, and will thus have a neutral impact on the demand for primary aggregates, compared to the baseline period (2001 to 2010).

Marine-dredged Aggregates

3.26 Marine-dredged aggregates are of major importance in South Wales, with supplies being sourced from the Severn Estuary and the Bristol Channel, but are of very limited importance in North Wales. In south East Wales, marine-dredged material accounted for more than 96% of all sand & gravel production over the baseline period (2001 to 2010), reflecting the almost complete lack of historical (or current) land-based sand & gravel extraction in that area, despite the existence of potential land-based resources.

3.27 For the time being, it seems reasonable to suppose that marine-dredged aggregates will continue to supply a similar proportion of overall demand as they have done over the last decade, so the demand for land-won aggregates in any of the sub-regions of either South Wales or North Wales is not likely to be affected.

Anticipated Changes in Import/Export Factors

3.28 Wales has always been a net exporter of land-won aggregates. Data on both exports and imports is recorded in the 4-yearly Aggregate Minerals (AM) Surveys, and data for exports in the last three surveys is summarised in Table 3.2, below.

3.29 In North Wales, the main aggregate exports, by far, are those of Carboniferous Limestone which primarily (more than 90% in 2005 and almost 100% in 2009) are supplied to North West England. The AM Survey figures generally show that, as overall sales have fallen in recent years - particularly since 2005, the proportion (as well as the totals) of exports also fell. This implies that, during periods of recession, for general-purpose limestone aggregates, there is a reduced dependence by importing regions on supplies from more distant sources, as would be expected. But the reverse is also likely to be true: as the economy rebounds from the recent recession, the demand for exports from North Wales is likely to increase once again, and more quickly than the overall rate of economic growth.

3.30 In South Wales, the main export is of sandstone, the vast majority (almost 90%) of which is High Specification Aggregate (HSA) - skid-resistant road surfacing material with a Polished Stone Value (PSV) of 58 or above, and generally much higher (Thompson, Greig & Shaw 1993; Thompson et al., 2005). Reference to Table 3.2 shows that, although there was a reduction in sandstone exports between 2005 and 2009, the difference was much less marked than was the case for limestone exports from North Wales, especially in percentage terms. This reflects the fact that the market for skid-resistant road aggregate has held up better, during the recent recession, than has been the case for more general-purpose limestone aggregate (presumably because of the safety imperative of continuing to maintain skid resistance on major roads).
3.31 In terms of being able to predict future sales, however, there is considerable uncertainty: there could be a higher than average upsurge in demand as road maintenance requirements catch up with the lack of all but essential spending during the recent recession (and particularly with the cumulative resurfacing requirements triggered by recent harsh winters); or there could simply be a continuation of recent levels of demand, as any improved availability of central and local authority funding is diverted to other, more neglected, areas of public finance. There is therefore no evidence that the demand for exports of aggregate from South Wales will be any greater over the next 10 to 15 years than it was over the baseline period of 2001 - 2010.

3.32 Imports of land-based aggregates from England are very minor, by comparison with exports. In North Wales, imports in 2009 amounted to just 0.03mt of land-won sand & gravel, and only 0.653mt of crushed rock, more than 90% of which comprised igneous rock and sandstone from neighbouring South Wales. In South Wales in 2009, land-based imports amounted to 0.064mt of sand & gravel and 0.172mt of crushed rock, primarily from South West England.

3.33 Imports and exports of marine-dredged sand and gravel between England and Wales are only relevant to the RTS apportionment exercise if they affect the continuity of supply of these materials to Wales and thus give rise to increased demand on land-based resources. This is potentially an issue in South East Wales which, as noted earlier, is heavily dependent upon marine aggregates. At present (2013), Wales is a net importer of marine sand & gravel, dredged from the English side of the median line in the Bristol Channel and the Severn Estuary. This is likely to change in the next few years, however, subject to the approval of new licence applications within Welsh waters. In practice, although this will change the balance between imports and exports, the new licences should ensure that there is no disruption of the continuity of supply.
Table 3.2: Summary of key export statistics for aggregates from recent AM Surveys

<table>
<thead>
<tr>
<th>Note: all figures exclude sales for non-aggregate use</th>
<th>AM2001 (mt)</th>
<th>AM2005 (mt)</th>
<th>AM2009 (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Wales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land won Sand & Gravel Sales</td>
<td>1.342</td>
<td>1.192</td>
<td>0.589</td>
</tr>
<tr>
<td>S&G Exports*</td>
<td>0.544</td>
<td>0.508</td>
<td>0.128</td>
</tr>
<tr>
<td>Exports as % of S&G total</td>
<td>41%</td>
<td>43%</td>
<td>22%</td>
</tr>
<tr>
<td>Limestone Sales</td>
<td>6.062</td>
<td>4.641</td>
<td>2.636</td>
</tr>
<tr>
<td>Limestone Exports*</td>
<td>3.344</td>
<td>2.973</td>
<td>1.116</td>
</tr>
<tr>
<td>Exports as % of Limestone total</td>
<td>55%</td>
<td>64%</td>
<td>42%</td>
</tr>
<tr>
<td>Igneous Sales</td>
<td>1.136</td>
<td>1.022</td>
<td>0.610</td>
</tr>
<tr>
<td>Igneous Exports*</td>
<td>0.091</td>
<td>0.277</td>
<td>0.064</td>
</tr>
<tr>
<td>Exports as % of Igneous total</td>
<td>8%</td>
<td>27%</td>
<td>10%</td>
</tr>
<tr>
<td>Sandstone Sales</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sandstone Exports*</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Exports as % of Sandstone total</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Total Crushed Rock Sales**</td>
<td>7.198</td>
<td>5.663</td>
<td>3.245</td>
</tr>
<tr>
<td>Total CR Exports*</td>
<td>3.436</td>
<td>3.251</td>
<td>1.178</td>
</tr>
<tr>
<td>CR Exports as % of CR total</td>
<td>48%</td>
<td>57%</td>
<td>36%</td>
</tr>
<tr>
<td>South Wales</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land won Sand & Gravel Sales</td>
<td>0.115</td>
<td>0.304</td>
<td>0.144</td>
</tr>
<tr>
<td>S&G Exports*</td>
<td>0.001</td>
<td>0.011</td>
<td>0</td>
</tr>
<tr>
<td>Exports as % of S&G total</td>
<td>1%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Limestone Sales</td>
<td>6.536</td>
<td>6.137</td>
<td>4.554</td>
</tr>
<tr>
<td>Limestone Exports*</td>
<td>0.262</td>
<td>0.154</td>
<td>0.052</td>
</tr>
<tr>
<td>Exports as % of Limestone total</td>
<td>4%</td>
<td>3%</td>
<td>1%</td>
</tr>
<tr>
<td>Igneous Sales</td>
<td>0.838</td>
<td>1.238</td>
<td>1.025</td>
</tr>
<tr>
<td>Igneous Exports*</td>
<td>0.572</td>
<td>0.430</td>
<td>0.694</td>
</tr>
<tr>
<td>Exports as % of Igneous total</td>
<td>68%</td>
<td>35%</td>
<td>68%</td>
</tr>
<tr>
<td>Sandstone Sales</td>
<td>2.648</td>
<td>3.498</td>
<td>2.605</td>
</tr>
<tr>
<td>Sandstone Exports*</td>
<td>1.457</td>
<td>1.941</td>
<td>1.258</td>
</tr>
<tr>
<td>Exports as % of Sandstone total</td>
<td>55%</td>
<td>55%</td>
<td>48%</td>
</tr>
<tr>
<td>Total Crushed Rock Sales**</td>
<td>10.310</td>
<td>10.873</td>
<td>8.185</td>
</tr>
<tr>
<td>Total CR Exports*</td>
<td>2.302</td>
<td>2.527</td>
<td>2.003</td>
</tr>
<tr>
<td>CR Exports as % of CR total</td>
<td>22%</td>
<td>23%</td>
<td>24%</td>
</tr>
</tbody>
</table>

* ‘exports’ includes movement between South Wales and North Wales, as well as to other regions (mostly in England).
** crushed rock sales exclude slate

Anticipated Changes in Economic Demand Factors

3.34 Before considering future changes it is worth considering the relationships between aggregate sales and economic factors over the baseline period (2001 to 2010). The data presented in Table 3.2, above, illustrates the substantial reduction of aggregate sales between the AM surveys of 2005 and 2009, spanning the start of the recent economic recession in 2008. This can be seen in more detail in the annual series of data from the South Wales and North Wales RAWP reports, as shown in Tables 3.3 and 3.4, below.
3.35 Tables 3.3 and 3.4 also show population figures and derived ‘per capita’ sales (tonnes of aggregate sales per person), the purpose of this being to illustrate the complete lack of correlation between population (which has risen steadily over the period) and aggregate sales, which have generally fallen. The tables also show annual GDP change figures, for the UK as a whole, as a broad indicator of economic activity. These clearly show the onset of the recession in 2008 and 2009, and the modest level of growth in 2010, compared with the earlier parts of the baseline period, broadly tying-in with the sales data.

Table 3.3: Annual sales of land-won primary aggregate, 2001 to 2010 (N. Wales), compared to population data and annual GDP change

<table>
<thead>
<tr>
<th>NORTH WALES</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>10 year averages*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crushed Rock * (mt)</td>
<td>7.2</td>
<td>6.52</td>
<td>6.3</td>
<td>6.51</td>
<td>6.1</td>
<td>6.29</td>
<td>6.3</td>
<td>5.51</td>
<td>3.9</td>
<td>4.47</td>
<td>5.91</td>
</tr>
<tr>
<td>Sand & Gravel * (mt)</td>
<td>1.39</td>
<td>1.35</td>
<td>1.27</td>
<td>1.14</td>
<td>1.24</td>
<td>1.17</td>
<td>1.06</td>
<td>1.1</td>
<td>0.63</td>
<td>0.7</td>
<td>1.11</td>
</tr>
<tr>
<td>Total * (mt)</td>
<td>8.59</td>
<td>7.87</td>
<td>7.57</td>
<td>7.65</td>
<td>7.34</td>
<td>7.46</td>
<td>7.36</td>
<td>6.61</td>
<td>4.53</td>
<td>5.17</td>
<td>7.02</td>
</tr>
<tr>
<td>Population ** (millions)</td>
<td>0.66</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
<td>0.68</td>
<td>0.68</td>
<td>0.68</td>
<td>0.69</td>
<td>0.68</td>
<td>0.68</td>
</tr>
<tr>
<td>Annual GDP change, UK ***</td>
<td>2.9%</td>
<td>2.4%</td>
<td>3.8%</td>
<td>2.9%</td>
<td>2.8%</td>
<td>2.6%</td>
<td>3.6%</td>
<td>-1.0%</td>
<td>-4.0%</td>
<td>1.8%</td>
<td>1.78%</td>
</tr>
</tbody>
</table>

* SOURCE: Annual RAWP reports for North Wales. Note that the 10 year averages shown here are slightly different from those used in Table 3.1 and elsewhere in this document, which were derived from new figures collated by the RAWP secretaries for the specific purpose of this review.

** SOURCE: Welsh Government population data

*** SOURCE: Eurostat website

Table 3.4: Annual sales of land-won primary aggregate, 2001 to 2010 (S. Wales), compared to population data and annual GDP change

<table>
<thead>
<tr>
<th>SOUTH WALES</th>
<th>2001</th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>10 year averages*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand & Gravel * (mt)</td>
<td>0.34</td>
<td>0.20</td>
<td>0.20</td>
<td>0.40</td>
<td>0.44</td>
<td>0.28</td>
<td>0.24</td>
<td>0.30</td>
<td>0.14</td>
<td>0.12</td>
<td>0.26</td>
</tr>
<tr>
<td>Total * (mt)</td>
<td>10.11</td>
<td>9.86</td>
<td>11.36</td>
<td>12.19</td>
<td>11.29</td>
<td>11.74</td>
<td>12.75</td>
<td>11.77</td>
<td>8.28</td>
<td>7.37</td>
<td>10.67</td>
</tr>
<tr>
<td>Population ** (millions)</td>
<td>2.25</td>
<td>2.26</td>
<td>2.27</td>
<td>2.28</td>
<td>2.30</td>
<td>2.31</td>
<td>2.33</td>
<td>2.34</td>
<td>2.35</td>
<td>2.36</td>
<td>2.30</td>
</tr>
<tr>
<td>Per capita Sales (tonnes)</td>
<td>4.50</td>
<td>4.37</td>
<td>5.01</td>
<td>5.33</td>
<td>4.92</td>
<td>5.08</td>
<td>5.48</td>
<td>5.02</td>
<td>3.52</td>
<td>3.12</td>
<td>4.63</td>
</tr>
<tr>
<td>Annual GDP change, UK ***</td>
<td>2.9%</td>
<td>2.4%</td>
<td>3.8%</td>
<td>2.9%</td>
<td>2.8%</td>
<td>2.6%</td>
<td>3.6%</td>
<td>-1.0%</td>
<td>-4.0%</td>
<td>1.8%</td>
<td>1.78%</td>
</tr>
</tbody>
</table>

* SOURCE: Annual RAWP reports for South Wales. Note that sales figures are the totals from sub-regions and do not always match with the Regional totals shown in the Annual Reports, due to discrepancies within some of those reports. Also, the resulting 10 year averages shown here are slightly different from those shown in Table 3.1 and elsewhere in this document, which were derived from new figures collated by the RAWP secretaries for the specific purpose of this review.

** SOURCE: Welsh Government population data

*** SOURCE: Eurostat website
3.36 As indicated by footnotes in each of the tables, the 10 year averages shown here are slightly different from those used in Table 3.1 and elsewhere in this document, which were derived from new figures collated by the RAWP secretaries for the specific purpose of this review.

3.37 Since 2010, GDP growth in the UK has fallen back again, to 0.9% in 2011 and 0.2% in 2012. The latest available forecasts for the next few years (from the Economic and Fiscal Outlook report published on 20 March 2013 by the Office of Budget Responsibility) are for 0.6% in 2013, 1.8% in 2014, 2.3% in 2015, 2.7% in 2016 and 2.8% in 2017. TEMPORARY NOTE: THESE FORECASTS WILL NO DOUBT CHANGE AGAIN AND WILL NEED TO BE UPDATED BEFORE THE FINAL REVISED RTS IS PUBLISHED. These forecasts suggest a slow return to the levels of growth seen in some of the earlier parts of the baseline period, but falling a long way short of the peaks seen in 2003 and 2007. The average of the GDP figures (out-turn and forecast) from 2011 to 2017, as quoted above, is just 1.61% per annum. This compares with an average of 1.78% per annum for the 2001 to 2010 baseline period and suggests that demand figures up to 2017 are, if anything, likely to be less than those for the baseline period. Consideration also needs to be given, however, to the possibility of a return to more substantial growth in the period beyond 2017. Whist there is currently no evidence to quantify or even suggest such growth, it would be prudent to allow for it.

3.38 Other potential sources of information that have been considered regarding the likely future demand for construction aggregates include population growth forecasts and Local Authority housing forecasts. Population forecasts are published by the Welsh Government and show a continued expansion of the population in all of the sub-regions. As noted above, the demand for aggregates has no significant correlation with population totals - at least not on the scale associated with year-on-year variations. A more useful measure, however, may be the average rate of population growth over a period of time. For the 10 year baseline period the average rate for the whole of Wales was 4.8% (i.e. an average of 0.48% per year). For the forecast data, the average growth rates are slightly higher: 0.55% per year for the period 2011 to 2017 (i.e. the period for which GDP forecasts are available - see above), but only 0.51% per year for the longer period from 2011 to 2031 (the furthest date for which figures are currently forecast). Whilst there is no statistical justification for assuming that rates of population growth will correlate with changes in demand for aggregates, they provide the only mechanism for looking further ahead than the current economic forecasts.

3.39 Local Authority housing forecasts provide a link between the Welsh Government’s population forecasts and future construction activity. The link is not necessarily a robust one though, since the houses and associated infrastructure will only be built if the necessary funding is made available - either by private sector investment and/or by Local Authorities.

3.40 Aside from predictions of economic growth and associated general construction activity, a further important element in the demand for aggregates is that relating to major infrastructure projects. These are considered further within the Regional
Appendices (A and B). However, despite numerous strategic projects being identified, there is no clear evidence to indicate whether these are likely to represent an increase or a decrease in future construction activity, compared with the baseline period. For the future, it is essential that there should be improved monitoring of both the completion and forecasting of such large scale projects, in such a way that they can be factored-in to the demand for construction materials.

Summary of Influences on Future Demand

3.41 Subject to the outcome of HMRC’s decision regarding the possible suspension of certain exemptions from the Aggregates Levy, and to the outcome of the formal EC investigation into those exemptions (see para. 3.23 above), little justification has otherwise been found for modifying the overall scale of future demand for primary aggregates that has been indicated by the historical baseline sales figures shown in Table 3.1, above. Whilst there is some evidence that short term rates of economic growth are likely to be less than those seen during most of the baseline period (2001 - 2010), implying a reduced level of demand in future years, there is also a need to allow for the possibility of increased growth during later years within the period covered by the revised RTS. That possibility is at least hinted at by future projections of population growth, but is also in keeping with the more general long-term economic cycle of peaks and troughs. If the Aggregate Levy Exemptions are suspended, or if the Levy itself is eventually abolished, this could have significant implications in terms of the future demand for primary aggregates. Whilst it would not be justified to rely to such factors in terms of clear predictions, it would be prudent not to ignore them for the purposes of ensuring an adequate level of future provision of construction aggregates.

3.42 As noted earlier, the historical sales figures represent the demand which has hitherto been placed upon individual MPAs to supply aggregates for use within those areas and elsewhere, including exports to England. The figures do not equate to consumption within those individual areas.

3.43 Unfortunately there are no detailed statistics available for the consumption of aggregates within individual MPAs in Wales, only within broad sub-regional groupings which provide very limited insight. Inevitably, however, there are geographical imbalances between production and consumption, simply as a consequence of the geographical differences between the spatial distribution of resources and the locations of urban development and infrastructure. Despite those differences, however, there is an economic imperative for quarries to be located as close as possible to the main centres of consumption.

3.44 This is not to say that the current distribution of quarries is perfectly aligned with either the proximity principle or the notion of environmental capacity, however. For this reason, the historical demand/sales figures shown in Table 3.1 do not necessarily represent the geographical pattern of apportionments that would ideally be required in future years. Chapter 4 of this report provides an analysis of the proximity and environmental capacity influences which need to be considered, and balanced against practical issues and other aspects of sustainability, before the final apportionments for each MPA can be assessed.
Regional Demand

3.45 At a Regional level, the fine-tuning associated with proximity and environmental factors becomes less significant in determining the geographical balance of supply between the two RAWPs. The two regions are largely independent in terms of the linkages between supply and demand, with only a limited amount of aggregate transportation between them. The main factor in assessing the future demand over the next 22/25 years at this level is therefore assumed to be the average sales of such materials over the baseline period from 2001 to 2010, inclusive, subject to any factors which might influence changes in this demand within the foreseeable future. As noted above, and as explained in more detail within the Regional Appendices, subject to HMRC’s decisions on the future of exemptions from the Aggregates Levy, the analysis of these factors has not identified any justification for modifying the future contributions from marine, secondary and recycled sources, or for making adjustments for changes in imports or exports, or future economic trends. The baseline figures for residual primary aggregate production are therefore considered to be valid as they stand.

3.46 The overall demand for land-based primary aggregate production in each of the Welsh Regions over the periods covered by this review can therefore be grossed-up from the analysis of individual MPA figures presented in Table 3.1, and is summarised in Table 3.5, below.

Table 3.5: Baseline assessment of Regional demand for land-based primary aggregate production in North Wales and South Wales, 2011 to 2036

<table>
<thead>
<tr>
<th>Region</th>
<th>Aggregate Type</th>
<th>Historical 10-yr sales average, 2001 to 2010 * (mtpa)</th>
<th>Total requirement over 22 years (sand & gravel) or 25 years (crushed rock) (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North Wales</td>
<td>Land-won Sand & Gravel</td>
<td>1.08</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Crushed Rock</td>
<td>5.80</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>TOTAL Land-won aggregate</td>
<td>6.88</td>
<td>169</td>
</tr>
<tr>
<td>South Wales</td>
<td>Land-won Sand & Gravel</td>
<td>0.33</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>Crushed Rock</td>
<td>10.47</td>
<td>262</td>
</tr>
<tr>
<td></td>
<td>TOTAL Land-won aggregate</td>
<td>10.80</td>
<td>269</td>
</tr>
</tbody>
</table>

* NOTE: The totals shown here are slightly different from those shown in Tables 3.3 and 3.4, as they are derived from the new figures collated by the RAWP secretaries for the specific purpose of this review (as detailed in Table 3.1).

3.47 The figures in the right-hand column of this table represent the total level of provision for aggregates production which needs to be made in each region over the period covered by this review. This is 22 years for land-based sand & gravel (i.e. 2011 to 2033) in order to maintain minimum landbanks of 7 years throughout the 15 year period of each LDP; and 25 years for crushed rock (i.e. 2011 to 2036),

5 In the AM2009 survey, 9.2% (0.6mt) of the crushed rock production in South Wales was transported to destinations within North Wales, whilst only 0.2% of the crushed rock production in North Wales was transported into South Wales.
in order to maintain minimum landbanks of 10 years, as required by MTAN1. The sub-Regional apportionment of these figures among individual MPAs is addressed in Chapter 5 of this report, following the assessment of proximity and environmental capacity issues in Chapter 4.

National Demand

3.48 At the National level, the average annual future demand upon Wales over the next 22 or 25 years (as appropriate), for the supply of primary, land-based construction aggregates, is assumed to be equivalent to the average sales of these materials over the baseline period (2001 to 2010, inclusive). As noted earlier, this measure naturally incorporates allowances for the continued production and sales of marine, secondary and recycled aggregates and for the balance between imports and exports over that period and, subject to HMRC’s decisions on the future of exemptions from the Aggregates Levy, the foregoing analysis has not found any reason to amend these factors for the purposes of estimating future demand over the next 22-25 years. The National demand for land-based primary aggregate production over the next 22 years (for sand & gravel) or 25 years (for crushed rock), combining the data for the two regions, is therefore as summarised in Table 3.6, below:

Table 3.6: Baseline assessment of National demand for land-based primary aggregate production in Wales, 2011 to 2036

<table>
<thead>
<tr>
<th>Aggregate Type</th>
<th>Historical 10-yr sales average, 2001 to 2010 * (mtpa)</th>
<th>Total requirement over 22 years (sand & gravel) or 25 years (crushed rock) (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land-won Sand & Gravel</td>
<td>1.41</td>
<td>31</td>
</tr>
<tr>
<td>Crushed Rock</td>
<td>16.27</td>
<td>407</td>
</tr>
<tr>
<td>TOTAL Land-won aggregate</td>
<td>17.68</td>
<td>438</td>
</tr>
</tbody>
</table>

* NOTE: The totals shown here are slightly different from those shown in Tables 3.3 and 3.4, as they are derived from the new figures collated by the RAWP secretaries for the specific purpose of this review, as detailed in Table 3.1.

Assessment of Reserves and Landbanks

3.49 The final part of the picture which needs to be understood in order to develop sensible apportionments and allocations for future working is that relating to the existing landbanks of permitted reserves.

3.50 The relevant details are shown in Table 3.7, below, and have been compiled from various sources. Most of the data were originally collated by the RAWP secretaries from confidential information supplied by their constituent MPAs, but have since been refined, in some cases, from public domain information (e.g. planning applications, Inspectors’ reports and LDP documents) to provide a more detailed breakdown than had previously been possible within the RAWP annual reports, and to exclude the reserves at dormant sites and suspended permissions (see below). The figures quoted are either already in the public domain and/or are totals for active and inactive quarries operated by three or more separate companies at the time in question (December 2010).
Table 3.7: Existing permitted reserves and corresponding landbanks as at 31st December 2010

<table>
<thead>
<tr>
<th>Mineral Planning Authority</th>
<th>Land-won Sand & Gravel Aggregates</th>
<th>Crushed Rock Aggregates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reserves (mt)*</td>
<td>Landbank (years)**</td>
</tr>
<tr>
<td>Wrexham</td>
<td>15.24</td>
<td>26.5</td>
</tr>
<tr>
<td>Flintshire</td>
<td>3.00</td>
<td>9.6</td>
</tr>
<tr>
<td>Denbighshire</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>Conwy + Snowdonia NPA</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>Anglesey</td>
<td>0.00</td>
<td>0.0</td>
</tr>
<tr>
<td>Gwynedd</td>
<td>0.70</td>
<td>4.0</td>
</tr>
<tr>
<td>Sub-totals, North Wales</td>
<td>18.94</td>
<td>17.5</td>
</tr>
<tr>
<td>Ceredigion***</td>
<td>2.41</td>
<td>17</td>
</tr>
<tr>
<td>Pembrokeshire</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pembrokeshire Coast NPA</td>
<td>1.65</td>
<td>10.3</td>
</tr>
<tr>
<td>Carmarthenshire</td>
<td>0.26</td>
<td>190</td>
</tr>
<tr>
<td>Swansea</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neath Port Talbot</td>
<td>0.53</td>
<td>17.7</td>
</tr>
<tr>
<td>Powys</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bridgend</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brecon Beacons NPA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Merthyr Tydfil</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vale of Glamorgan</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhondda Cynon Taf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cardiff</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caerphilly</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blaenau Gwent</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Torfaen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Newport</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sub-totals, South Wales</td>
<td>4.85</td>
<td>14.7</td>
</tr>
<tr>
<td>TOTALS, Wales</td>
<td>23.79</td>
<td>16.9</td>
</tr>
</tbody>
</table>

Source: Collated by the RAWP secretaries from MPA data, adjusted in some cases to exclude dormant sites which had previously been included (in the South Wales RAWP reports) and refined in other cases from public domain information (e.g. planning applications, Inspectors’ reports and LDP documents) to provide a more detailed or updated breakdown.

* The quoted reserves exclude those at dormant sites and at one stalled ROMP site where planning permission has been suspended. As far as possible they also exclude material that is likely to be utilised for non-aggregate purposes (e.g. cement production, building stone, silica sand or steel making). Lists of currently active and inactive, as well as dormant or suspended sites within each Region are provided in the Regional Appendices.

** Landbanks (including sub-totals and totals thereof) are calculated as total reserves (as presented here) divided by average historical sales during the baseline period (2001-2010), as detailed in Table 3.1.

*** The sand & gravel reserves for Ceredigion include the new permission at Crug yr Eyr, even though this was eventually granted after December 2010

3.51 As noted earlier, a landbank (as defined in paragraph 45 of MTAN1) is the stock of planning permissions for the winning and working of minerals at active and inactive sites. Although inactive sites can include those which are dormant (see Glossary of Terms), Table 3.7 excludes the reserves at dormant sites, since these are required by paragraph 47 of MTAN1 to be identified separately, within Local...
Development Plans. This represents a possible but deliberate departure from MTAN1. The logic for the suggested departure is that dormant reserves, whilst having the benefit of planning permission, cannot be reactivated (and thus provide an effective contribution to the landbank) until they have been through the Review of Old Mineral Permissions (ROMP) process and modern planning conditions have been agreed. For similar reasons, Table 3.7 also excludes the reserves at one site where quarrying has been suspended, pending the resumption and eventual outcome of a stalled ROMP review.

3.52 Lists of currently active, inactive, dormant and suspended sites within each Region are provided in the Regional Appendices.

3.53 For the purposes of this review of the RTSs, and as another deliberate departure from MTAN1 in order to reflect current circumstances, the length of time represented by each landbank is based on the historical 10-year average sales figures for each individual authority (as shown in Table 3.1, above).

3.54 As illustrated in Table 3.7, many parts of Wales already have substantial crushed rock landbanks, sufficient to maintain the existing pattern of supply throughout the 25 year period covered by the revised RTS (i.e. to 2036) and sometimes well beyond. This does not apply everywhere, however. Some authorities would be facing shortfalls where they have insufficient or no permitted reserves, except at dormant or suspended sites.

3.55 In addition, some authorities with seemingly adequate landbanks overall may actually be facing shortfalls in terms of specific aggregate types. General purpose crushed rock aggregates, such as those obtained from granite, limestone or slate, are generally not interchangeable with those required for high specification end uses such as skid-resistant road surfacing materials, which are generally derived from particular types of hard sandstone or dolerite. Ideally, separate landbanks for different types of aggregate are needed but, in practice, the number of sites in each category would generally be too small for such figures to be presented without breaching confidentiality. This has not therefore been possible.

3.56 More generally, the issue of shortfalls and the need for new allocations cannot be assessed simply on the basis of maintaining the existing supply pattern, without first considering whether or not that pattern may need to change. This might be the case, for example, in any areas where there are marked imbalances between the locations of quarries and the distribution of demand, despite the existence of workable resources in closer proximity to that demand. Equally, it might need to change if existing quarries are in areas of relatively low environmental capacity and there are similar resources in areas of higher capacity which could serve the same markets just as well.

3.57 All of these issues are examined in Chapter 4, below, and in more detail within the two Regional Appendices. Apportionments, shortfalls and suggested allocations are then addressed, in the light of that information, within Chapter 5.
4. Analysis of the Existing Supply Pattern

Introduction

4.1 Having assessed the likely future demand for construction aggregates, MPPW requires that there should be an adequate and steady supply to meet this demand, and that this should be provided as sustainably as possible. This, in turn, requires consideration to be given to the proximity principle and to the notion of environmental capacity, as well as to the historical pattern of supply and the distribution of both existing landbanks and potential new resources.

4.2 In the original (2008) RTSs, proximity was only considered in terms of the ‘per capita’ demand analysis which, as noted earlier, is difficult to justify. There is little, if any, correlation between aggregate sales and population size. However, population density, together with the location of existing urban development, may at least provide an indication of the geographical areas where new construction is most likely to be concentrated. Proximity to such areas may then be seen as one measure of the sustainability of existing quarries, and a desirable factor in the location of new ones - subject, of course, to the availability of resources in those locations and to the consideration of other practical and environmental factors.

4.3 The concept of environmental capacity was considered, in the original RTSs, only in terms of providing qualitative descriptions for each MPA, based on outputs from the IMAECA analysis. As explained in para. 2.13, above, it had no influence at all on the current apportionments or allocations (although future working within National Parks was discouraged as a more general matter of Policy - MPPW paragraphs. 21 and 22; and MTAN1 paragraphs. 46, 49, 51, 52 & 53).

4.4 For the purposes of this review, a determined attempt has been made to use both the proximity principle and environmental capacity to better effect, in conjunction with an understanding of resource availability and historical supply patterns, in order to enhance, if possible, the spatial distribution of future supply sources.

4.5 In considering such enhancement, it must be remembered that supply patterns are crucially dependent on the availability of suitable resources and on the commercial viability of working them. As already noted, minerals can only be worked where they are found. Moreover, they can only be worked on a commercial scale where quarry operators are willing to invest in their extraction, and in the procedures necessary to avoid (or minimise) potential adverse environmental impacts. In most cases, the economic and commercial factors involved for individual sites cannot adequately be assessed at the strategic level represented by the RTS.

4.6 It must also be remembered that improved proximity might sometimes be at the expense of reduced environmental capacity; whilst improved capacity might be at the expense of increased transportation distances, with consequential increases in carbon emissions and traffic impacts. The two factors therefore need to be considered in combination.
Consideration also needs to be given to other factors, including the relative merits of extensions to existing quarries as opposed to new ‘greenfield sites’; the need to avoid stifling competition between different operators; and the need to maintain productive capacity - particularly at larger or more efficient units. These detailed issues can most effectively be dealt with at a local level, however, once the overall strategy has been established. For this reason, the following analysis begins with a consideration of the broad, National and Regional picture, with more detail being provided in the sub-Regional analyses presented in Appendices A and B. The key findings are then carried through to the assessment of future apportionments and allocations, in Chapter 5.

National and Regional Analysis

Distribution of Quarries and Resources

4.8 As noted above, the distribution of suitable geological resources is of fundamental importance in understanding the distribution of existing quarries, and in understanding the limitations involved in locating potential new ones. Once again, it is important to stress that minerals can only be worked where they are found.

4.9 Figure 4.1, below, shows the distribution of crushed rock quarries in Wales which were active in 2013, together with the outcrops of the key resources. The quarry locations are taken from an updated edition of the BGS ‘Britpits’ database, limiting the selection to those which produce hard rock aggregates, either as a primary product or (in the case of slate waste tips) as a secondary material. Larger scale maps, which show the locations of inactive and dormant, as well as active quarries, are presented in the more detailed analysis contained within the Regional Appendices (A and B).

4.10 The resource outcrops on Figure 4.1 are taken directly from the BGS Mineral Resources Map of Wales (Humpage & Bide, 2010), but are limited to those resources which are important for the production of crushed rock aggregates. These include all ‘Category 1’ resources, as identified on the BGS maps, and some (but not all) ‘Category 2’ resources. They fall into seven main groups, as follows:

- Carboniferous HSA sandstones (Category 1)
- Pre-Carboniferous HSA sandstones (Category 2)
- High Purity Carboniferous Limestone (Category 1)
- Other Carboniferous Limestone (Category 2)
- HSA dolerites (Category 1)
- Other igneous rock formations (Category 2)
- Slate (Category 2)

6 A 2012 edition of the Britpits database was supplied by the BGS at the outset of this study but was then updated by various members of the Project Steering Group in July and August 2013, particularly in terms of current operational status and ownership.
4.11 The term ‘HSA’ refers to ‘High Specification Aggregate’, which is suitable for use as skid-resistant road surfacing aggregate as defined in the original ‘Travers Morgan’ report on these materials for the former Department of the Environment (Thompson, Greig & Shaw, 1993). They are characterised by a high Polished Stone Value (PSV≥58) in combination with a low Aggregate Abrasion Value (AAV≤16) and tend to command a premium price compared with other types of road aggregate. They are also transported over much greater distances in order to meet specification requirements in areas which have no comparable indigenous resources (which includes most of eastern and southern England). HSA aggregates in Wales include certain types of hard sandstone (particularly the Carboniferous ‘Pennant’ Sandstones of the South Wales coalfield, and some older sandstones - mainly within Powys), and certain types of dolerite (a particular variety of igneous rock) which occurs within various parts of south-west, north-west and mid-Wales. It should be noted that some of the extensive sandstone formations within mid-Wales and North Wales that were identified as potential HSA resources within the 1993 Travers Morgan report have since been refined by the most recent and more detailed BGS resource mapping, such that only parts of those resources are now identified as potential sources of HSA material on a commercial scale.

4.12 The usual caveat should be added that not all of the outcrops, of any of the rock types or formations listed at para. 4.10, above, will necessarily be suitable for commercial quarrying. This is because all geological materials are inherently variable, from one part of their outcrop to another. Moreover, the commercial viability of extraction is also influenced by a large number of other practical issues including the local extent of the deposit, land ownership, access, and distance from market, as well as planning and environmental constraints.

4.13 Above all, it must be emphasised that Figure 4.1 (and Figure 4.2 below) displays the extent of potential resources and not reserves or permitted reserves. Resources are geological materials, including rocks and naturally occurring sand & gravel, which have the potential to be used for a particular purpose (in this case as construction aggregates). Reserves are those parts of a resource which are known to be suitable for this purpose (usually as a result of detailed ground investigations and laboratory testing) and permitted reserves are those reserves which have valid planning permission for the winning and working of the materials in question.

4.14 Excluded from Figure 4.1 are a range of weaker sandstones and limestones, including some ‘Category 2’ resources, which are not currently exploited as sources of crushed rock aggregate on anything other than an extremely local scale (e.g. for use on farms etc.), and where this is most unlikely to change in future, because of their inherent unsuitability for more commercial applications. Such resources include all Devonian sandstones and all post-Carboniferous sandstones and limestones. Whilst many of these have been identified by the BGS as being worthy of safeguarding within Local Development Plans (Wrighton & Humpage, 2012), they do not represent practical alternatives to the resources listed above, in terms of their ability to meet the same commercial specifications, and are therefore not considered further here.
4.15 Figure 4.2, below, provides a similar map of the distribution of land-based sand & gravel pits (including inactive and dormant sites as well as active ones) together with the corresponding potential resources. The latter are once again taken largely from the BGS Mineral Resources Map of Wales, and include a wide range of sediments which have potential as sources of natural aggregate.
Figure 4.2: Land-based Sand & Gravel Pits and Resources in Wales, 2013

Land-based Sand & Gravel Pits
- Active
- Inactive
- Dormant

Land-based Sand & Gravel Resources
- Resource blocks identified by WG research in NW Wales & SE Wales
- Sub-alluvial deposits
- River Terrace deposits
- Glaciofluvial deposits
- Other Glacigenic deposits
- Blown Sand deposits

BGS data reproduced under Licence No. 2009/031AA
British Geological Survey © NERC. All rights reserved
4.16 Figure 4.2 also shows, within NW Wales and SE Wales, more specific potential resource blocks which were identified in more detailed studies carried out for the National Assembly for Wales (Thompson et al., 2000; University of Liverpool, 2003). These are not necessarily the only potential worthwhile resources, but they are the most rigorously assessed, within the areas concerned.

4.17 Figure 4.3, below, shows the areas which are within a 20km radius of one or more currently active quarries (crushed rock and/or land-based sand & gravel units). In most cases, the economic radius of distribution is considerably greater than 20km: typically up to 50km for ‘ordinary’ graded aggregate or further in the case of value-added products (e.g. ready-mixed concrete and asphalt materials) that are often produced at remote depots for onward distribution, and much further still in the case of High Specification Aggregates or High Purity limestone. The diagram merely illustrates that the existing pattern of supply within Wales already conforms reasonably well to the Proximity Principle: very few parts of the country (those shown here in black) are more than 20km from a source of land-based aggregate and, in all cases, these are remote rural areas which are unlikely to generate significant levels of demand.

4.18 Figure 4.4, which follows, shows the distribution of crushed rock quarries in relation to the scale of demand upon individual MPAs for crushed rock aggregate production in Wales, as measured by average historical sales figures for each MPA over the baseline period (2001-2010). The shading corresponds to the figures given in Table 3.1, above\(^7\), and it is emphasised that this illustrates the demand being made upon these areas, including both domestic consumption and exports to adjoining areas, including England. Figure 4.5 then provides a similar map for land-based sand & gravel production.

4.19 The focus of demand for crushed rock production is clearly seen to be in North-East Wales - particularly Flintshire (which is where most of the exporting Carboniferous Limestone quarries are located); and in Powys, where a number of sandstone and igneous rock quarries supply HSA material to England - particularly to adjoining parts of the West Midlands. In the rest of South Wales the picture is distorted by the much smaller size of many of the individual unitary authorities, particularly in the south-east, where the totals for each MPA are less than for the much larger county of Powys, even though overall production within SE Wales is double the total for Powys.

4.20 Historical crushed rock sales in South Wales have been concentrated within the Carmarthenshire, Bridgend, Vale of Glamorgan, Rhondda Cynon Taf and Cardiff MPAs (which is where most of the larger Carboniferous Limestone quarries in South Wales are located), and in the adjoining MPAs of Caerphilly and Neath Port Talbot, where additional HSA sandstone quarries are also located.

\(^7\)The exception being Snowdonia National Park, which is combined with Conwy in Table 3.1, for confidentiality reasons, but which in fact had very limited production over the baseline period, from a single site.
Figure 4.3: 20km radii from all active quarries and pits in Wales, 2013. (black areas = beyond 20km)
Figure 4.4: Spatial Distribution of Anticipated Crushed Rock Demand upon each MPA, based on Average Sales 2001 - 2010, with locations of Active Crushed Rock Aggregate Quarries (2013)

Active Crushed Rock Quarries
- Limestone (excl. cement)
- Sandstone
- Igneous
- Slate
- Slate Waste

Average Crushed Rock Sales per MPA 2001 - 2010 (mtpa)
4.21 Whereas much of the crushed rock demand upon NE Wales derives from the neighbouring parts of North West England, particularly Merseyside, most if not all of the limestone production in South East Wales appears to be utilised locally, within the producing areas, and within the adjoining MPAs of Swansea and Neath Port Talbot, to the west, and those of Merthyr Tydfil, Caerphilly and the ‘Former Gwent’ authorities to the east. Although Carboniferous Limestone resources do exist in these adjoining areas, they are either less extensive and/or more heavily constrained (see Appendix B for more detailed analysis).

4.22 The fact that little or none of the limestone from South Wales is exported further east, into England, is evidenced by the fact that additional Carboniferous Limestone from the Forest of Dean in Gloucestershire needs to be imported into the former Gwent area to make up for what would otherwise be an overall shortfall of supply. Although SE Wales has significant exports of crushed rock to England, most if not all of those exports are of HSA from the Pennant Sandstone formations of the South Wales Coalfield.

4.23 Overall, the pattern of demand for crushed rock aggregate production outlined above relates largely to the availability of resources, the location of established supply units and the proximity of these to the main areas of construction activity and/or to major transport routes such as M4 corridor. Further analysis of the supply pattern, including the relationships between quarry locations, resources, markets, major designations and environmental capacity, is provided in paragraphs 4.27 et seq., below, and in the two Regional Appendices.

4.24 Looking to the future, any undue reliance on historical supply data would inevitably reinforce and perpetuate the same patterns of supply. However, any imposed change to this pattern would either necessitate working less suitable, thinner or otherwise less viable resources, where these exist, or (in some cases at least) may entail increased transportation distances, with consequential increases in carbon emissions and traffic impacts. These issues are explored in more detail in the sub-Regional analyses within Appendices A and B.

4.25 In the case of sand & gravel production, as illustrated in Figure 4.5, below, the picture is greatly distorted by the reliance of South East Wales, in particular, on marine-dredged aggregates from the Bristol Channel and the Severn Estuary. South West Wales is less dependent on marine aggregates and has a small number of active land-based sites. Powys is too far removed from the coast to be influenced to any significant degree by marine aggregates, but still has only one very small land-based sand & gravel site currently in operation. It is reliant instead on crushed rock material, despite the apparent resources of natural sand & gravel within the upper reaches of the Severn, Wye and Usk valleys. In North Wales, there are, once again, apparently plentiful resources of natural sand & gravel in Gwynedd (as indicated in both BGS and Liverpool University mapping) but the supply pattern is dominated by one major quarry within Wrexham and (to a much smaller extent) by two further units within Wrexham and two or three others in Flintshire. Further details are given in the Regional Appendices.
Figure 4.5: Spatial Distribution of Anticipated Demand for Land-won Sand & Gravel upon each MPA, based on Average Sales 2001 - 2010, with locations of Sand & Gravel Pits (2013)

Land-based Sand & Gravel Pits
- Active
- Inactive
- Dormant

Average Sand & Gravel Sales per MPA
2001 - 2010 (mtpa)
4.26 Overall, in South Wales and much of North Wales, the relative lack of land-based sand & gravel production is influenced to a very large extent by environmental and landscape concerns, as well as by the relative ease of availability of alternative materials (marine aggregates, crushed rock and slate, including slate waste).

Distribution of Population and Transport Links

4.27 Figure 4.6, below, illustrates the variation in population density by local authority area, using data for 2010. It also shows urban areas, A-roads and motorways, together with the locations of all currently active quarries. It should be noted that not all of the roads shown are necessarily used for the transportation of aggregates, and that additional local roads will also be utilised close to individual quarries, distribution depots or customer locations. Equally, some of the exported material is transported by rail, though the quantities involved are not large. Together, the areas of high population density and the main urban areas provide a good indication of where construction activity is most likely to be concentrated, but the locations of major transport routes, such as the A55 in North Wales, and the M4 corridor in South Wales have important influences on export distribution.

4.28 In North Wales, the variation in population density has some similarities with the distribution of historical crushed rock sales (Fig 4.4) with a strong focus on Flintshire but also on Wrexham (which has no crushed rock production, and only limited resources) and, to a lesser extent, on Denbighshire. The road network here, particularly along the north and east coasts, also demonstrates the ease of access for exports into the conurbations of North West England, including the Wirral, Liverpool and Warrington. As demonstrated by the more detailed analysis within Appendix A, however, there may be merits in adjusting the future supply pattern for crushed rock production by focusing new allocations within Flintshire, Wrexham, Conwy or north Denbighshire. There is also a need to maintain sand & gravel supplies within North West Wales by developing further resources in Gwynedd.

4.29 In South Wales, there is some coincidence between the areas of high population density and urban areas, on the one hand, and the distribution of crushed rock sales and quarries, on the other, but the relationship is less clear than in the north and the need for adjustments to the future supply pattern is, in some cases, more compelling. In particular, the areas of Newport, Torfaen, Blaenau Gwent and Caerphilly have higher population densities than those of the Vale of Glamorgan, Bridgend and RCT, but it is in the latter areas where most of the Carboniferous Limestone outcrops and quarries are located. The distribution of crushed rock quarries in this area as a whole is therefore not ideally matched with the main areas of demand, suggesting that there may need to be some adjustment in terms of future apportionments, on the grounds of proximity. This, however, needs to be examined in more detail and balanced against both environmental capacity and commercial factors. Further commentary is given in Appendix B.
Figure 4.6: LPA Population Densities (2010) and main urban areas, as approximations for the pattern of demand for construction aggregates, with motorways, A-roads, national landscape designations and locations of all active quarries & pits (2013)

Active Quarries & Pits
- Limestone (excl. cement)
- Sandstone
- Igneous
- Slate
- Slate Waste
- Sand & Gravel

Main urban areas
- In Wales
- In England

Population Density (people per km2)
- 25 (Powys)
- 342 (Flintshire)
- 742 (Newport)
- 2431 (Cardiff)

National Landscape Designations
- National Parks
- Areas of Outstanding Natural Beauty
4.30 In mid Wales, there is a marked contrast between the very low population density of Powys and the high level of demand placed upon that County, in terms of crushed rock sales (compare Fig 4.6 with Fig 4.4). This, as noted earlier, is primarily due to the presence of five large quarries which export High Specification Aggregates by road to markets in England. Taking that into account, together with the distribution of these important resources, these quarries are clearly well-placed in terms of proximity to the relevant markets and transport routes.

Distribution of Environmental Capacity

4.31 Figure 4.7, below, illustrates the spatial variations in Environmental Capacity across most of Wales, as indicated by the ‘combined scores’ from the IMAECA Geographic Information System tool developed by Enviros Consulting Ltd. (2005). As explained more fully in paragraphs 2.10 et seq., above, the tool provides values, relative to arbitrary thresholds between the three coloured categories, for each 1km square which was assessed by the IMAECA project. The areas assessed were identified on the basis of whether or not aggregate resources were present within all or part of each square. Areas which were considered not to contain such resources were not assessed, which is why many parts of the country are left blank.

4.32 It should be noted that, whilst the GIS tool allows separate results to be shown for different resource categories, those categories do not entirely match with the current BGS mineral resource maps and the resource outlines are therefore quite different. It is therefore more useful to look at the overall picture, as shown in Fig 4.7 (and, at a slightly larger scale but at the same level of detail, in the various maps which accompany the sub-Regional analysis in Appendices A and B).

4.33 It must be emphasised that the IMAECA results are intended only to provide a very broad indication of the capacity of different areas to accept the environmental impacts of additional quarrying activity. They are necessarily generalised and are specifically not intended to take the place of conventional ‘sieve-mapping’ within individual Local Authorities, where more detailed constraint maps can be used and site-specific issues can be examined to determine the relative pros and cons of different factors. The IMAECA results have also been criticised for the fact that the presence of an existing quarry is treated, in the IMAECA analysis, as a factor which reduces the capacity for further quarrying in that area. Whilst there might be some justification for this, in terms of seeking to minimise cumulative impacts, it conflicts with the widely-held notion that well-designed extensions to existing quarries are likely to be more acceptable, at least in terms of public perception, than the introduction of quarrying to previously undisturbed ‘greenfield’ sites.

4.34 Bearing all of that in mind, the IMAECA results nevertheless provide a useful starting point for comparing environmental capacity issues with other factors (including resource availability, proximity and commercial viability) in areas where the historical supply pattern is thought to be in need of improvement, from a sustainability point of view. This is examined further in the Regional Appendices (A and B), the key findings of which are summarised at the end of this chapter.
Figure 4.7: Environmental Capacity Assessment (combined scores for each km²), as assessed by the IMAECA project, with locations of all active quarries & pits (2013)

Active Quarries & Pits
- Limestone (excl. cement)
- Sandstone
- Igneous
- Slate
- Slate Waste
- Sand & Gravel

Environmental Capacity *
- Relatively Low Environmental Capacity*
- Medium Environmental Capacity*
- Relatively High Environmental Capacity*
- Areas not assessed*

* Assessed as part of the ‘IMAECA’ project, (Implementing the Methodology for Assessing the Environmental Capacity for Primary Aggregates - Enviros Consulting Ltd., 2005).
Sub-Regional Analysis of Supply Patterns

4.35 More detailed, sub-regional analyses of the inter-relationships between each of the various factors outlined above are presented in the Regional Appendices for North Wales (Appendix A) and South Wales (Appendix B). Observations are given on the extent to which the existing supply patterns comply with the broad sustainability criteria relating to the proximity principle and environmental capacity, within the limitations imposed by the availability of resources.

4.36 Where those observations suggest that the existing supply patterns could be improved, in terms of sustainability, through adjustments to the distribution of future apportionments and allocations, the suggestions have been carried through to the analysis presented in Chapter 5, below.

4.37 Briefly summarised, the suggestions for making such adjustments are as follows:

- Adjusting apportionments for land-based sand & gravel provision within North Wales such that new allocations become focused on the resources within north Denbighshire and Gwynedd in order to generate an improved balance of supply overall (see paragraph A45 in Appendix A);

- Adjusting the balance of apportionments and allocations for land-based sand & gravel provision within mid- and southwest Wales, as necessary, in order to find a longer-term solution to the aspiration of reducing future production within the Pembrokeshire Coast National Park (see paragraphs B45 and Error! Reference source not found. in Appendix B);

- Reducing crushed rock apportionments in Anglesey and Gwynedd, with corresponding increases in Flintshire/Wrexham and/or Conwy or north Denbighshire, in order to focus any new allocations in the latter areas (see paragraphs A36 and A43 in Appendix A);

- Considering a reduction of future HSA sandstone output in Neath Port Talbot, provided that a corresponding increase can be agreed within other MPAs further east, in order to focus any new allocations (as and when they become necessary, in future RTS reviews) on areas that will help to reduce the transportation impacts associated with HSA exports to England (see paragraphs B52 and B67 in Appendix B).

- Considering an increase in the crushed rock allocation for Carboniferous Limestone in Caerphilly, unless the existing unit at Machen is likely to be reactivated within the near future (see paragraph B64 in Appendix B);

Temporary Note: yellow highlights are just temporary reminders of cross references to paragraphs in the Appendices. These paragraph numbers may need to be updated following changes in response to comments received during the consultation process.
5. **Future Apportionments and Allocations**

Introduction

5.1 The two main outputs of the RTS process are required to be the identification of apportionments for each Mineral Planning Authority in Wales for the 22 or 25 year period\(^8\) concerned; and the identification of any allocations that may need to be designated within individual LDPs in order to secure this level of provision.

5.2 The assessment presented in Chapter 3 of this review has identified the historical pattern of demand upon each individual MPA for the production of land-based primary aggregates, based on average sales over the preceding 10 year ‘baseline’ period (2001 to 2010, inclusive). The review of factors relating to the availability of alternative materials, imports, exports and economic growth has suggested that this historical supply pattern is likely to provide a good guide for the determination of future apportionments, both in terms of overall quantities and broad geographical distribution. No evidence was found of economic factors which would suggest otherwise.

5.3 However, in accordance with the over-arching principles set out in Chapter 2, future apportionments and allocations also need to reflect the consideration of other sustainability factors, particularly those relating to proximity and environmental capacity. These factors have been considered in Chapter 4 (and in more detail within the Regional Appendices). That work has found that, in most areas, the existing pattern of supply is sensibly balanced in terms of proximity and capacity, within the restrictions imposed by the distribution of workable resources, and the requirements of economic viability. However, it has also identified some areas (as summarised in para. 4.37, above) where there might be merits in adjusting the future supply pattern in order to improve sustainability.

Suggested Apportionments

5.4 Table 5.1, below, sets out the suggested apportionments for each individual MPA within Wales, based on the historical sales data presented in Table 3.1, with adjustments in some areas to deal with the suggestions from para. 4.37, above. For convenience, Table 5.1 shows figures for the annualised apportionments and the historical sales averages (for comparison), as well as the total apportionment required from each MPA over the full period covered by the RTS (i.e. 22 years for sand & gravel, and 25 years for crushed rock provision). It must be emphasised, however, that it is only the total apportionment over the duration of a particular LDP which matters and that, at the start of the relevant Plan period, the overall provision can be achieved through a combination of existing landbanks and (where necessary) new allocations. There is no requirement for an MPA to maintain or limit their annual sales in line with either the annualised apportionment or the historical sales averages.

\(^8\) This First Review RTS covers the period from 2011 to 2033, inclusive, for sand & gravel provision, and to 2036 for crushed rock provision. This is based on the need to maintain minimum landbanks of 7 years (for sand & gravel) and 10 years (for crushed rock) throughout a 15 year LDP. Given that individual LDPs will have different start dates, the annualised apportionment should be used to calculate the total provision required in each case.
Table 5.1: Suggested Apportionments for Future Aggregates Provision in Wales, 2011 to 2033 (sand & gravel) or 2036 (crushed rock)

<table>
<thead>
<tr>
<th>Mineral Planning Authority</th>
<th>Land-won Sand & Gravel</th>
<th>Crushed Rock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Apportionment (Provision) over 22 years (mt)</td>
<td>Annualised Apportionment (mtpa)</td>
</tr>
<tr>
<td>Wrexham</td>
<td>12.76</td>
<td>0.58</td>
</tr>
<tr>
<td>Flintshire</td>
<td>4.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Denbighshire</td>
<td>2.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Snowdonia NPA*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anglesey</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gwynedd</td>
<td>4.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Sub-totals, N. Wales</td>
<td>23.76</td>
<td>1.08</td>
</tr>
<tr>
<td>Ceredigion</td>
<td>7.26</td>
<td>0.33</td>
</tr>
<tr>
<td>Pembrokeshire</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pembs Coast NPA*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carmarthenshire</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Swansea</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neath Port Talbot</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Powys</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bridgend</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brecon Beacons NPA*</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Merthyr Tydfil</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vale of Glamorgan</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhondda Cynon Taf</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cardiff</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caerphilly</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blaenau Gwent</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Torfaen</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Newport</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monmouthshire</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sub-totals, S. Wales</td>
<td>7.26</td>
<td>0.33</td>
</tr>
<tr>
<td>TOTALS Wales</td>
<td>31.02</td>
<td>1.41</td>
</tr>
</tbody>
</table>

SOURCE: Derived from the historical sales figures presented in Table 3.1, with adjustments to address the requirements summarised in para. 4.37 above, and discussed further in the text below. Green shaded cells indicate apportionments that are set higher than historical sales. Those shaded pink indicate corresponding reductions. The sub-total figures for North Wales and South Wales, and the totals for all of Wales remain unchanged from the figures indicated by historical sales.

*Where apportionments are shown for National Parks, these relate to production from existing permitted reserves in those areas. There is no requirement for National Parks to provide future allocations.

5.5 There is inevitably a strong bias in this table towards the existing pattern of supply. This is because that pattern is inextricably linked to the existing distribution of permitted reserves, and because the operators at those sites have well-established...
markets and distribution networks. Some deliberate differences have been introduced, however, where there are opportunities and justifications for doing so, in order to encourage a more sustainable pattern of future supply. In each case, the suggested adjustments seek to optimise the balance between proximity, environmental capacity and commercial reality. They are specifically focused on the findings of the detailed sub-regional analyses, as presented in Appendices A and B, and summarised in para. 4.37, above. Further explanations are given below for each one.

5.6 Land-based sand & gravel apportionments in North Wales have been increased in Denbighshire and Gwynedd, and correspondingly reduced in Flintshire, in order to generate an improved balance of supply overall. Specifically, this should help to reduce the dominance of supplies from NE Wales, allowing those in Wrexham, in particular, to remain focused on the markets within that area and in adjoining parts of North West England. It should also help to encourage the development of new resources within Gwynedd and North Denbighshire, which in turn should allow the markets in those areas to be supplied from more local sources. This, however, is dependent upon suitable resources being found in that area; specifically, resources which include an appropriate balance between fine aggregate (sand) and coarse aggregate (gravel). If that cannot be achieved, the fine aggregate fraction might still need to be supplied from NE Wales or, perhaps, from marine-dredged sources off the North Wales coast. The suggested requirement for Gwynedd could potentially be shared with Anglesey, through local cooperation in preparing their LDPs, although Anglesey has very limited sand & gravel resources and no current extraction.

5.7 The apportionments and allocations for land-based sand & gravel within Pembrokeshire, the Pembrokeshire Coast National Park, Ceredigion, and Carmarthenshire have been combined. This is primarily in order to encourage cooperation between these authorities in finding a longer-term solution to the aspiration of reducing future production within the National Park, once existing permitted reserves in that area have been exhausted. The present supply pattern in this part of Wales is (quite understandably) focused on the areas which have the main concentrations of high quality glacio-fluvial sand & gravel deposits, to the east and south west of Cardigan, although a large proportion of these deposits fall within the National Park. Other potential resources do exist, however, although the commercial viability of those in Carmarthenshire is compromised by the availability of marine-dredged material landed at Burry Port. The apportionment for Powys has also been transferred to this group of authorities in recognition of the fact that the current reserves and output from the one site in Powys are extremely small, and unlikely to be sustained in future years. Although the apportionment for Powys has been reduced to zero, this does not preclude the potential need for temporary borrow pits being utilised within that County to support specific major infrastructure demands for concrete aggregate, such as wind farms (as is the case for all other areas).

5.8 Crushed rock apportionments in Anglesey and Gwynedd have been reduced, with corresponding increases in Flintshire and/or Wrexham, in recognition of the fact
that the major markets for crushed rock aggregate supplied from North Wales are likely to be predominantly within those areas and further east, in neighbouring parts of north west England (see Appendix A). It is also suggested that the apportionments for Flintshire and Wrexham are combined, in order to provide greater flexibility. At present, as shown in Appendix A, there are no crushed rock workings in Wrexham and virtually all of the unworked limestone resources in that area fall within the AONB. It may, however, be possible to find some scope for future working through detailed collaborative working between the two adjoining MPAs. The suggested change will focus the requirement for new allocations on Flintshire/Wrexham although increases could alternatively be sought within Conwy and/or north Denbighshire, subject to views from NWA RAWP members.

5.9 It has been suggested in Appendix B (para. B52) that there might be some merit in reducing future output from Neath Port Talbot and increasing that from other MPAs further east within the Pennant Sandstone outcrop (e.g. Rhondda Cynon Taf, Caerphilly, Torfaen or Blaenau Gwent), in order to reduce the road transportation distances of HSA exports to England. That said, a high proportion of the resource outcrop within Neath Port Talbot coincides with areas of high environmental capacity whereas such areas are more limited within the outcrops further east. In practice, the shortfall in Neath Port Talbot has since been addressed by a new permission to extend the existing operations at Gilfach Quarry, from which part of the output is exported by train via the railhead at Neath Abbey. For future reference, however, if such a shift in supply pattern were considered beneficial, in the light of more detailed and balanced considerations of proximity, environmental capacity and other aspects of sustainability, this could be encouraged by reducing the requirement for any further new allocations or permissions within Neath Port Talbot, and transferring part of the apportionment to one or more of the MPAs further east, subject to agreements between the MPAs involved. This, however, is a matter for future revisions of the RTS.

5.10 The remaining suggestion carried forward from Appendix B is the possible need for further crushed rock allocations (of Carboniferous Limestone) within Caerphilly, in order to encourage an improved compliance with the proximity principle in supplying limestone aggregates to Newport and Torfaen, further east. To achieve this, there is no requirement to increase the level of apportionment in Caerphilly - only to fulfil it. Ideally, the inactive permission at Machen will able to be brought back into production in due course. It is only if this unit and the much smaller one at Cwmleyshon nearby remain inactive (despite the projected economic recovery) that the local authority may need to find an allocation for alternative reserves and then encourage these to be developed instead.

Comparison with Existing Landbanks

5.11 Landbank figures for the end of the baseline period (December 2010) have already been presented in Table 3.7, in Chapter 3. As explained in Chapter 3, the existing landbanks relate to the reserves at active and inactive sites but deliberately exclude the reserves at dormant and suspended sites. Those are discussed further at para. 5.19, below.
5.12 As noted under Table 3.7, the adequacy or otherwise of existing landbanks, in terms of contributing to the provision required in each MPA by the RTS, needs to be considered in the light of any adjustments to the pattern of future apportionments that are justified by proximity and/or environmental capacity criteria. Those adjustments are now incorporated in Table 5.1 and explained in the foregoing text.

5.13 Taking these adjustments into account, Table 5.2, below, compares the total provision for land-won sand & gravel now required (over the period 2011 to 2033), with the size of existing sand & gravel landbanks (from Table 3.7). Table 5.3 then provides similar comparisons for crushed rock, for the period up to 2036. In each case, the resulting surpluses (shown in green) or shortfalls (shown in red) of available reserves are indicated in the third column. The resulting minimum requirements for new allocations are then shown in the last column. It should be noted that these relate to the landbank position at the end of 2010, and that in some cases the allocation requirements may already have been partially or entirely fulfilled, either by new permissions granted since 2010, or by allocations that have already been identified in LDPs.

5.14 As far as possible, the information in each table is presented for individual MPAs but, where confidentiality restrictions on the landbank data do not allow this, the figures for some adjoining MPAs have been grouped together.

Allocations Required to Meet Shortfalls

5.15 In the case of land-based sand & gravel provision, Table 5.2 reveals that only Wrexham and Powys had a surplus of existing permitted reserves in December 2010 (in the latter case this being purely due to the decline in production from the two small sites previously involved) and that up to seven other MPAs (three in North Wales and a grouping of four in South Wales) will need to find new allocations in order to deliver the total provision required over the period covered by this review of the RTS (except where the indicated shortfall has already been covered by new permissions granted since December 2010). In North Wales, new allocations are called for in Flintshire, Denbighshire and, especially, Gwynedd. In South Wales the requirements are more modest, and are focused on Carmarthenshire, Pembrokeshire (including the National Park\(^9\)) and Ceredigion. The justification in each case has been summarised in paragraphs 5.6 and 5.7, respectively. The remaining MPAs have neither a surplus nor deficit for sand & gravel provision, but in all cases this is simply because they currently have no production and no apportionment. In South East Wales, this position is critically dependent upon the continued availability of marine-dredged aggregates. If that source of supply were to be disrupted, there would be an urgent need to reconsider the apportionments to all of the authorities in that area.

\(^9\) Although the Pembrokeshire Coast National Park makes an important contribution to the existing provision of sand & gravel in West Wales, it is not expected to contribute to future provision (beyond the expiry of existing permissions) unless here are no environmentally acceptable alternatives.
Table 5.2: Comparison of total apportionments for land-based sand & gravel, 2011 to 2033 with existing (December 2010) landbanks of permitted reserves.

<table>
<thead>
<tr>
<th>Mineral Planning Authority</th>
<th>Total Apportionment (Provision) for sand & gravel over 22 years - from Table 5.1 (mt)</th>
<th>Existing Sand & Gravel Landbank - at 31 December 2010 - from Table 3.7 (mt)</th>
<th>Surplus (+) or Shortfall (-) of Existing Reserves (Landbank minus Apportionment) (mt)</th>
<th>Minimum Allocation needed in LDP to meet the Required Provision for Land-based Sand & Gravel (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrexham</td>
<td>12.76</td>
<td>15.24</td>
<td>+2.48</td>
<td>0</td>
</tr>
<tr>
<td>Flintshire</td>
<td>4.4</td>
<td>3</td>
<td>-1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Denbighshire</td>
<td>2.2</td>
<td>0</td>
<td>-2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Conwy</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Snowdonia NPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anglesey</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gwynedd</td>
<td>4.4</td>
<td>0.7</td>
<td>-3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>Sub-totals, N. Wales</td>
<td>23.76</td>
<td>18.94</td>
<td>-4.82</td>
<td>7.3</td>
</tr>
<tr>
<td>Ceredigion</td>
<td>7.26</td>
<td>2.41</td>
<td>-2.94</td>
<td>2.94</td>
</tr>
<tr>
<td>Pembrokeshire</td>
<td>1.65</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pembs Coast NPA*</td>
<td>0.26</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Carmarthenshire</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Swansea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neath Port Talbot</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Powys</td>
<td>0.53</td>
<td>0.53</td>
<td>+0.53</td>
<td>0</td>
</tr>
<tr>
<td>Bridgend</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brecon Beacons NPA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Merthyr Tydfil</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vale of Glamorgan</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rhondda Cynon Taf</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cardiff</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caerphilly</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Blaenau Gwent</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Torfaen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Newport</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monmouthshire</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sub-totals, S. Wales</td>
<td>7.26</td>
<td>4.85</td>
<td>-2.41</td>
<td>2.94</td>
</tr>
<tr>
<td>TOTALS Wales</td>
<td>31.02</td>
<td>23.79</td>
<td>-7.23</td>
<td>10.24</td>
</tr>
</tbody>
</table>

NOTE: Where allocation requirements are shown these are the minimum amounts required to meet the RTS requirements. In many cases an application for an individual new permission will exceed these amounts, in the interests of economic viability. Such applications should not be rejected purely on the grounds of exceeding the minimum requirements shown here. In some cases, the suggested allocations may already have been partially or entirely fulfilled, either by new permissions granted since 2010, or by allocations that have already been identified in LDPs.

*Although the Pembrokeshire Coast National Park makes an important contribution to the existing provision for this group of authorities, it is not expected to contribute to the suggested allocation of new reserves, unless there are no environmentally acceptable alternatives.
Table 5.3: Comparison of total apportionments for crushed rock aggregates, 2011 to 2036 with existing (December 2010) landbanks of permitted reserves

<table>
<thead>
<tr>
<th>Mineral Planning Authority</th>
<th>Total Apportionment (Provision) for crushed rock over 25 years - from Table 5.1 (mt)</th>
<th>Existing Crushed Rock Landbank - at 31 December 2010 - from Table 3.7 (mt)</th>
<th>Surplus (+) or Shortfall (-) of Existing Reserves (Landbank minus Apportionment) (mt)</th>
<th>Minimum Allocation needed in LDP to meet the Required Provision for Crushed Rock (mt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrexham</td>
<td>78.25</td>
<td>0</td>
<td>-3.84</td>
<td>3.84</td>
</tr>
<tr>
<td>Flintshire</td>
<td></td>
<td>74.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Denbighshire</td>
<td>22.25</td>
<td>22.07</td>
<td>-0.18</td>
<td>0.18</td>
</tr>
<tr>
<td>Conwy</td>
<td>30.75</td>
<td>67.43</td>
<td>+36.68</td>
<td>0</td>
</tr>
<tr>
<td>Snowdonia NPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anglesey</td>
<td>7.0</td>
<td>5.69</td>
<td>-1.31</td>
<td>1.31</td>
</tr>
<tr>
<td>Gwynedd</td>
<td>6.75</td>
<td>8.51</td>
<td>+1.76</td>
<td>0</td>
</tr>
<tr>
<td>Sub-totals, N. Wales</td>
<td>145.0</td>
<td>178.11</td>
<td>+33.11</td>
<td>5.33</td>
</tr>
<tr>
<td>Ceredigion</td>
<td>5.0</td>
<td>13</td>
<td>+8</td>
<td>0</td>
</tr>
<tr>
<td>Pembrokeshire</td>
<td>21.0</td>
<td>28</td>
<td>+14</td>
<td>0</td>
</tr>
<tr>
<td>Pembs Coast NPA</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carmarthenshire</td>
<td>26.75</td>
<td>47</td>
<td>+20.25</td>
<td>0</td>
</tr>
<tr>
<td>Swansea</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neath Port Talbot</td>
<td>14.75</td>
<td>9</td>
<td>-5.75</td>
<td>5.75*</td>
</tr>
<tr>
<td>Powys</td>
<td>62.75</td>
<td>119</td>
<td>+56.25</td>
<td>0</td>
</tr>
<tr>
<td>Bridgend</td>
<td>18.75</td>
<td>47</td>
<td>+28.25</td>
<td>0</td>
</tr>
<tr>
<td>Brecon Beacons NPA</td>
<td>20.5</td>
<td>94</td>
<td>+73.5</td>
<td>0</td>
</tr>
<tr>
<td>Merthyr Tydfil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhondda Cynon Taf</td>
<td>17.25</td>
<td>13</td>
<td>-4.25</td>
<td>4.25</td>
</tr>
<tr>
<td>Cardiff</td>
<td>21.5</td>
<td>41</td>
<td>+19.5</td>
<td>0</td>
</tr>
<tr>
<td>Caerphilly</td>
<td>19</td>
<td>27.8</td>
<td>+8.8</td>
<td>0*</td>
</tr>
<tr>
<td>Blaenau Gwent</td>
<td>4.25</td>
<td>3</td>
<td>-1.25</td>
<td>1.25</td>
</tr>
<tr>
<td>Torfaen</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Newport</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Monmouthshire</td>
<td>3.0</td>
<td>11</td>
<td>+8</td>
<td>0</td>
</tr>
<tr>
<td>Sub-totals, S. Wales</td>
<td>261.75</td>
<td>473.5</td>
<td>211.75</td>
<td>24.8</td>
</tr>
<tr>
<td>TOTALS Wales</td>
<td>406.75</td>
<td>651.61</td>
<td>+244.86</td>
<td>30.13</td>
</tr>
</tbody>
</table>

NOTE: Where allocation requirements are shown these are the minimum amounts required to meet the RTS requirements. In many cases an application for an individual new permission will exceed these amounts, in the interests of economic viability. Such applications should not be rejected purely on the grounds of exceeding the minimum requirements shown here. In some cases, the suggested allocations may already have been partially or entirely fulfilled, either by new permissions granted since 2010, or by allocations that have already been identified in LDPs.

* This requirement has already been fulfilled by a recent (2012) permission to extend Gilfach Quarry, which has provided 8.42 million tonnes of additional permitted reserves (but see para. 5.9 for further observations).

** An allocation for Carboniferous Limestone in Caerphilly might be required if Machen quarry is not reactivated (see para. 5.10).
5.16 In the case of crushed rock provision, the figures shown in Table 5.3 suggest that many areas have a surplus of existing permitted reserves, but that four of those in North Wales (Wrexham, Flintshire, Denbighshire and Anglesey) and a further four in South Wales (Neath Port Talbot, Vale of Glamorgan, Rhondda Cynon Taf and Blaenau Gwent) were facing a shortfall of reserves (as of December 2010) and, except where these have already been addressed by new permissions granted since that time, will need to find new allocations when preparing or reviewing their LDPs. In addition, Caerphilly might need to find a new allocation for Carboniferous Limestone, depending on its assessment of the likelihood of two inactive quarries being brought back into production in the near future. The justifications are provided in paragraphs 5.8 to 5.10, above.

5.17 In each case, where sufficiently detailed information exists, it is recommended that the allocations should ideally take the form of Specific Sites, as defined in paragraph 14 of Minerals Planning Policy Wales i.e. “where mineral resources of commercial significance exist, and where any planning applications which come forward for those sites are likely to be acceptable in planning terms”. Where that is not possible, they should normally at least take the form of Preferred Areas (“areas of known resources with some commercial potential, and where planning permission might reasonably be anticipated”), within which operators should be encouraged to bring forward more specific proposals.

5.18 A key requirement is to be able to demonstrate, within the LDP, that adequate provision has been made and this, in turn, means that the quantity of workable reserves within the allocation needs to be known, as far as possible. In most cases, this is only likely to be feasible within Specific Sites. Preferred Areas will generally not have sufficient information to be able to do this, though it may sometimes be possible for reasonable estimates to be made. Areas of Search (“...broad areas that are believed to contain mineral resources of commercial significance but whose extent is uncertain...”) will usually have only minimal information on the suitability and commercial viability of the resources for commercial development and will therefore generally be inappropriate for the purposes of making allocations. There will be some situations, however, where there is insufficient knowledge about potential resources to identify anything other than Areas of Search. Where this is the case, it is recommended that the Area(s) so identified should provide the potential for the release of new reserves which are far greater than the minimum allocation recommended, in order to allow for the uncertainties involved.

5.19 As noted in Chapter 2 (para. 2.4), where an MPA considers that the reserves at dormant sites are likely to be capable of being worked in the relevant period (subject to Environmental Impact Assessment and the agreement of modern conditions) it may be possible for those reserves to be offset against the requirement for new allocations. The same logic would apply to reserves at suspended sites. The logic would only work, however, if the sites in question meet the same expectations as for other allocations, i.e. that they comply with the definition of Specific Sites or at least Preferred Areas, as given in MPPW.
5.20 Finally, it should be noted that the recommendations made above are based on currently available information regarding reserves, production, proximity and environmental capacity. As noted in ‘Box 1’ of the original RTS documents, the suggested apportionments and allocations do not take fully into account all factors that may be material to the ensuring an adequate supply of aggregates obtained from appropriately located sources. Such factors may include such things as:

- The technical capability of one type of aggregate to interchange for another;
- The relative environmental cost of substitution of one type of aggregate by another;
- The relative environmental effects of changing patterns of supply; and
- Whether adequate production capacity can be maintained to meet the required level of supply.

5.21 For such reasons, and as already noted in Chapter 1 (para. 1.8), where it is justified by new evidence, it is open for individual MPAs to depart from the apportionment and allocation figures recommended by the RTS. In doing so, however, an MPA would need to demonstrate that their intended departure would not undermine the overall strategy provided by the RTS itself (e.g. by working together with other MPAs to ensure that sub-regional and regional totals are still achieved) and this would be likely to become a key issue at Examination and/or Public Inquiry. Where the local authorities involved are unable to reach agreement, or if individual local authorities do not accept the Regional Technical Statement, as a last resort the Welsh Government will consider its default powers to intervene in the planning process, (MTAN 1, paragraph A3).
6. **Consultation Process**

6.1 This First Review of the RTS documents for North Wales and South Wales has been undertaken as a collaborative exercise with several stages of consultation and technical peer review.

6.2 At the outset of the project, initial consultation meetings were held with a range of stakeholders to ensure that the Review was properly focused and that key sources of information were made available for consideration. The organisations and/or representative individuals consulted were as follows:

- Steve Bool, Secretary of the South Wales Regional Aggregates Working Party
- Gary Nancarrow, Secretary of the North Wales Regional Aggregates Working Party
- Ken Hobden and others, representing the Mineral Products Association
- Huw Davies, of the Environment Agency Wales (EAW)*
- Karen Maddock-Jones of the Countryside Council for Wales (CCW)*
- Murray Alston of the British Aggregates Association
- Ian Selby of the Crown Estate
- Mark Russell of the British Marine Aggregate Producers Association

* From 1st April 2013, EAW and CCW combined with the Forestry Commission (Wales) to form “Natural Resources Wales” (NRW).

6.3 The findings of this early stage of consultation are detailed in the Interim Report, issued on 28th March 2013 (pdf copies available on request from the author).

6.4 Initial drafts of the revised RTS were then produced in stages between April and September 2013. At each stage, consultation was held with a Project Steering Group made up of the RTS sub-committees of the two Regional Aggregate Working Parties (including mineral operators, mineral planning authorities and Natural Resources Wales). This consultation entailed issuing drafts for comment, Steering Group meetings chaired by Joanne Smith of the Welsh Government, and the preparation of revised drafts incorporating responses to all Steering Group comments received, including the receipt of new technical data. Each successive draft superseded previous versions.

6.5 The third draft was issued to the entire membership of both RAWPs and comments on that version were received at a joint North Wales and South Wales RAWP meeting on 30th September 2013. The present document takes account of consultation responses received at this and all previous Steering Group meetings and is now published for wider consultation by all interested parties - specifically including the Member Forums for each RAWP.

10 MPA representatives at this meeting comprised: Ken Hobden (MPA); Mark Russell (MPA); Malcolm Radcliffe (MPA); David Harding (MPA); Malcolm Lawer (Lafarge Tarmac); Ross Halley (Lafarge Tarmac); Lisa Trivett (Lafarge Tarmac); Shaun Denny (CEMEX); Simon Chaffe (Matthews & Son); and Mark Frampton (Hanson UK).
6.6 This document will be available via the Websites of both RAWPs for an eight-week period of Public Consultation, between 28th October and 23rd December, 2013. Within that period, two consultation events will be held, on 20th November at Bridgend in South Wales and on 21st November at Llandudno Junction in North Wales. At each event, the RTS review process will be clearly explained and the findings, including recommendations to individual MPAs, will be presented for discussion and comment.

6.7 This final stage of consultation represents the main opportunity for elected members to scrutinise the document and to be satisfied that it is acceptable and fit for purpose, taking account of both local views and technical advice from their respective officers.

6.8 A final revision of the document will be carried out following the analysis and Steering Group discussion of the public consultation responses. Where conflicting views have been received during the Public Consultation exercise, the Steering Group will aim to determine the most sensible and sustainable resolution, making use of their combined technical expertise.

6.9 The final revision will then be presented to a combined meeting of the two Member Forums, at which political endorsement of the document by Members representing all constituent Mineral Planning Authorities within Wales will hopefully be obtained. It is not anticipated that any significant changes will need to be made following this meeting, given the extent of previous scrutiny, but if any major disagreements are encountered, these will be considered by the Welsh Government, as final arbiter.

6.10 Once political endorsement has been obtained from the Member Forums, it is intended that the final version of the First Review RTS will be endorsed for publication by the Welsh Government. The document will also be translated, at that stage, into Welsh, and electronic (pdf) copies of both English and Welsh versions will subsequently be made available via the RAWP Websites.

6.11 In the interests of sustainability, it is not intended that printed copies will be issued.

6.12 As with the original RTS documents, at this broad level and given the detailed analysis that will be required to implement the RTS through Local Development Plans, it was not considered appropriate or required that Strategic Environmental Assessment (SEA) or Health Impact Assessment (HIA) should be conducted as part of the First Review.

11 Full details of these events are given on the respective RAWP Websites. Up to 40 places will be available at each event, which will be free to attend, but places will need to be booked in advance (before 10th November) by contacting the author (alan.thompson@cuesta-consulting.com).
References

Land Use Consultants (2012): *Delivery of Planning Services in Statutory Designated Landscapes in Wales.* Report to the Planning Division of the Welsh Government. (64pp + Appendices)

Glossary

The following terms are frequently used in relation to aggregate supply and apportionment. The terms are listed in topic groupings rather than alphabetically.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition, in relation to the supply of aggregates</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOPIC: Aggregate Materials</td>
<td></td>
</tr>
<tr>
<td>Aggregate</td>
<td>Crushed rock, natural sand and gravel or artificial granular material that is used in construction, often in conjunction with a suitable binding agent such as bitumen or cement.</td>
</tr>
<tr>
<td>Primary Aggregates</td>
<td>Aggregates sourced directly from naturally occurring geological materials as a primary product (as distinct from secondary aggregates, including excavation wastes, produced as a by-product from the extraction or processing of geological materials for other primary purposes).</td>
</tr>
<tr>
<td>Secondary Aggregates</td>
<td>These are usually by-products of other industrial processes, or the arisings from non-aggregates extractive operations, that have been processed to meet the specification requirements for construction aggregate materials. They can be sub-divided into manufactured and natural materials, depending on their source. Examples of manufactured secondary aggregates are pulverised fuel ash (PFA) and metallurgical (iron and steel) slags. Natural secondary aggregates include china clay sand, ball clay sand, aggregate produced from slate waste or colliery spoil and excavation wastes (as defined below). All of these are exempt from the aggregates levy, giving them a deliberate cost advantage over primary materials, in an attempt to encourage their greater use.</td>
</tr>
<tr>
<td>Construction, Demolition and Excavation Wastes (CD&EW)</td>
<td>A term referring to wastes (see below) arising from the construction or demolition of buildings and/or civil engineering infrastructure, or from excavations associated with land levelling, foundations or other civil engineering works. Aggregates may be derived from some of these various waste streams, either as recycled materials or from excavation wastes (both of which are defined separately below).</td>
</tr>
<tr>
<td>Waste</td>
<td>Any substance or object which the holder discards or intends, or is required, to discard. In CD&EW surveys, materials arising from construction or demolition works, or from associated excavations, which are beneficially used in an unprocessed form on the site on which they arise are generally not regarded as waste, because they are not generally regulated as waste.</td>
</tr>
<tr>
<td>Road planings</td>
<td>A particular example of CD& EW materials, comprising aggregate and bituminous or cement binder materials that have been ‘planed’ from the surface of a worn out road prior to resurfacing with new or recycled materials.</td>
</tr>
<tr>
<td>Recycled Materials suitable for use as Aggregate</td>
<td>These are materials, usually arising from construction or demolition projects, which have previously been used for construction purposes, and which are capable of being recycled or re-used as construction aggregates for a second or further time. In the Finance Act 2001, all materials previously used in construction are exempt from the aggregates levy, giving them a deliberate cost advantage over primary aggregates in an attempt to encourage their greater utilisation.</td>
</tr>
</tbody>
</table>
| Excavation Waste suitable for use as Aggregate | These are materials that may be suitable, with or without processing, for use as secondary aggregates, arising from excavation works:
 a) on the site of any building or proposed building, where the excavation is undertaken exclusively for the purposes of laying foundations, pipes or cables;
 b) on the site of any river, canal, watercourse or navigational channel, where the excavation is undertaken exclusively for the purpose of creating, restoring, improving or maintaining that feature;
 c) along the line or proposed line of any highway or proposed highway, where the excavation is undertaken for the purpose of constructing, improving or maintaining the highway and not wholly or mainly for the purpose of extracting aggregate.

Each of these categories, as defined more precisely in the Finance Act 2001, is exempt from the aggregates levy, giving these materials a deliberate cost advantage over primary materials in an attempt to encourage their greater utilisation. |
| Mineral Wastes | Mineral wastes are identified in MTAN1 as a further category of material with potential for use as aggregate. The term is specifically used to encompass aggregates from slate waste, colliery spoil, and crushed rock fines (i.e. the “dust” generated from crushing and screening operations in hard rock primary aggregate quarries). It may also include aggregates produced from the excavation and processing wastes at building stone (dimensional stone) quarries. Aggregates produced from slate waste and colliery spoil are classed as secondary materials (see above) and are exempt from the aggregates levy. The same is not true of crushed rock fines, or of the residue from building stone production, both of which remain classed as primary aggregates and are not exempt. |
TOPIC: Supply and Demand

Production	The overall rate at which products are generated, in tonnes (or millions of tonnes) per year, whether or not they are sold. In quarrying, production includes any unsaleable materials that may be produced, including overburden, interburden and processing waste, which may or may not be useable. Production therefore represents the overall rate (in tonnes or millions of tonnes) per year) at which the permitted reserves at a particular site or group of sites are being used up.
Sales	The rate at which products are sold, in tonnes (or millions of tonnes) per year. In quarrying, for the reasons outlined above, this will usually be less than the rate of production.
Consumption	The rate at which products are used, within a specified market area, measured in tonnes (or millions of tonnes) per year. The amount of consumption, and the amount of money spent on it, will reflect the changing interaction between demand and supply, as defined below.
Demand	The need or desire for a particular product, backed by an ability to pay. Demand is measured over a given time period, and is determined by a number of factors including the consumer's budgets and preferences, and the price and availability of alternative products. For most products, demand falls as the price rises. Demand for aggregates may be expressed in terms of the rate at which it is expected to be supplied from a particular market area (which is rarely known), or the rate at which it is expected to be supplied from a given source area, and is measured in tonnes (or millions of tonnes) per year.
Supply	The amount of a product which producers are both willing and able to sell at a given price. Supply of aggregates is normally expressed in relation to a particular source area and is measured in tonnes (or millions of tonnes) per year.
Distribution	The pattern of market destinations served by the sales from a particular quarry or group of quarries.

TOPIC: Resources, Reserves and Landbanks

Resources (of primary aggregate)	Geological materials, including rocks and naturally occurring sand & gravel, which have the potential to be used as aggregates.
Permitted Reserves (of primary aggregate)	Primary aggregate resources which have the benefit of planning permission for the winning and working of minerals.
Landbank (of primary aggregate reserves)	In general, a landbank is a stock of planning permissions for the winning and working of minerals within a specified area, expressed both in millions of tonnes and in terms of the number of years' supply which they represent. The latter is usually calculated on the basis of recent rates of production.
Current Landbank (of primary aggregate reserves)	In MTAN1 (paragraph 45), this is defined as "the sum of all permitted reserves at active and inactive sites at a given time and for a given area", and is required to be based on "the latest 3 years production figures" (production, in this case, usually being represented by sales). For the purposes of this review, and in the interests of adopting a more practical approach to the strategic planning of aggregates provision in Wales, two deliberate departures from this definition were agreed by the Steering Group. Firstly, although 'inactive sites' technically include those which are dormant or suspended, the current landbank has been taken to exclude those sites (but see also ‘Dormant Reserves’ below). Secondly, in recognition of the recent prolonged economic recession, the agreed method of calculating the landbank has been to use the average of the latest 10 (rather than 3) years' sales figures.
Dormant Reserves	The permitted reserves of primary aggregates at Dormant sites (see below). MTAN1 (paragraph 47) requires these to be "clearly shown in the landbank calculations as a separate category". For the purposes of this review, such reserves and those at sites where permission has been suspended (see below) have therefore been excluded from the main landbank calculations used to determine future allocation requirements, though in some cases they might be able to be taken into account by local authorities to offset any requirement for new allocations, subject to more detailed local knowledge.
Future Landbank (of primary aggregate reserves)	In MTAN1 (paragraph 45), the Future (or "Extended") Landbank is defined as "land specifically allocated for the working of aggregates". The term is confusing and inappropriate, since a landbank is a stock of planning permissions and (by definition), allocations do not have this status. Allocations may thus form part of the overall 'provision' within a Local Development Plan, but cannot form part of the landbank.
Apportionment	The rate for which the mineral planning system requires provision to be made, in Development Plans, for the supply of aggregates from a given area or region. This may be expressed either in terms of millions of tonnes over a specified period, and/or as an averaged 'annualised apportionment' in millions of tonnes per year.
Allocation	The identification, within a Local Development Plan, of an area of land for future mineral working. In Wales, the size (in terms of tonnage) of allocations required in specific LDPs are defined in the Regional Technical Statements, but only for areas in which the cumulative apportionments over the period covered by the RTS are in excess of the available landbank of permitted reserves.
Provision	The total amount of aggregate required to be supplied from a particular local authority over the duration of its Local Development Plan. The overall provision may comprise both a landbank of permitted reserves and allocations for future working.
TOPIC: Quarry Status

Active Site	Active sites in Wales are explicitly defined by the Town and Country Planning (Fees for Applications and Deemed Applications) (Amendment No.2) (Wales) Regulations 2006 as sites where “a) development to which the relevant mineral permission or landfill permission relates is being carried out to any substantial extent; or b) other works to which a condition attached to such permission are being carried out to any substantial extent”. “Substantial extent” is not defined, but relevant guidance is provided in Minerals Planning Guidance Note 14 (MPG14): Environment Act 1995:- Review of Mineral Planning Permissions.
Inactive Site	Defined by the Town and Country Planning (Fees for Applications and Deemed Applications) (Amendment No.2) (Wales) Regulations 2006 as one “which is not an active site”, as defined above. Inactive sites thus include, but are not limited to, those which are classified under the Environment Act 1995 as being dormant and those where planning permission has been suspended (see below).
Dormant Site	As defined in the Environment Act 1995, this refers specifically to quarries with mineral permissions granted between 30th June 1948 and 22nd February 1982 (i.e. “Phase I” and “Phase II” sites, as defined in the Act) where no minerals development was carried out to any substantial extent in, on, or under the site at any time in the period beginning on 22 February 1982 and ending with 6 June 1995. These sites still have valid planning permissions but, since 1st November 1995 it has not been lawful to recommence or carry on working a dormant site until full modern planning conditions have been approved by the Mineral Planning Authority (MPA), through the process of an initial ROMP review (see below). In some areas there are additional, ‘dormant IDO’ sites, as defined within the Planning and Compensation Act, 1991. These are sites which were originally granted consent under ‘Interim Development Orders’ (IDO’s), in the period between 22 July 1943 and 1 July 1948, and which were subsequently registered under the 1991 Act (thus retaining valid planning permission), but where no substantial work was carried out between 1 May 1989 and 30th April 1991. For these sites, a scheme of operation and restoration conditions is required to be submitted to the relevant MPA together with an acceptable Environmental Assessment, before they can lawfully be reactivated.
ROMP	The acronym for ‘Review of Old Mineral Permissions’ carried out in accordance with the Environment Act 1995. Sites which obtained planning permission between 1948 and 1982, whether active, inactive or dormant, were required by this Act to be subject to an Initial Review in order that modern planning conditions can be agreed. In addition, all sites (including reactivated ISO permissions) are required to be subject to subsequent Periodic Reviews at intervals of not less than 15 years. ROMP applications cannot be refused, since valid planning permissions already exist. However, court judgments, guidance and regulations have since clarified that both the ROMP process, and the approval of new conditions at IDO sites, amount to obtaining new development consents and are therefore subject to Environmental Impact Assessment.
Stalled ROMP / Suspended Permission	Where a ROMP review has begun but has not been completed (e.g. because an Environmental Statement has not been submitted), the ROMP process is said to have ‘stalled’. In accordance with the Town and Country Planning (Environmental Impact Assessment) (Undetermined Reviews of Old Mineral Permissions) (Wales) Regulations 2009, planning permission then becomes ‘suspended’ - i.e. it ceases to authorise any minerals development. As with dormant sites, suspended permissions cannot lawfully be operated until the process (including Environmental Impact Assessment) has been completed and modern conditions agreed.
Regional Technical Statements
(1st Review)

Appendix B (South Wales)

(Consultation Draft, October 2013)

Prepared, on behalf of the Welsh Government and the South Wales Regional Aggregate Working Party, by

Cuesta Consulting Limited
PEMBROKESHIRE / PEMBROKESHIRE COAST NATIONAL PARK

Apportionment for the future provision of land-won primary aggregates

The two planning authorities are already working jointly with regard to minerals planning, with a view to gradually reducing extraction within the National Park. Between them, they are required to make future provision for land-won primary aggregates within their joint Development Plan on the basis of the following annualised apportionments:

<table>
<thead>
<tr>
<th>Category</th>
<th>Provision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land-won sand & gravel provision</td>
<td>0.33 million tonnes per year (jointly with Carmarthenshire and Ceredigion) until the end of the Plan period and for 7 years thereafter.</td>
</tr>
<tr>
<td>Crushed rock aggregates provision</td>
<td>1.09 million tonnes per year until the end of the Plan period and for 10 years thereafter.</td>
</tr>
</tbody>
</table>

These figures are based on the assumption that average annual demand for land-won primary aggregates within the area, over the period to 2036, will be comparable to the average annual sales over the baseline period used in the First Review of the RTS (i.e. 2001 to 2010).

They are also based on the assumption that supplies of alternative aggregates, from marine, secondary and recycled sources, will continue to be maintained in proportions comparable to those experienced during the baseline period, although the proportion of marine-dredged aggregates may need to increase as existing reserves of land-based sand & gravel are depleted, in future years.

The accuracy of these assumptions will need to be monitored by the planning authority and that data will be used to inform a revision of the apportionment requirements, if this is needed, as part of the next review of the RTS.

The need for provision to extend beyond the Plan period is based on the requirement in MTAN1 for maintaining landbanks of 7 years for sand & gravel and 10 years for crushed rock, throughout the full duration of the LDP. Subject to this requirement being met, the overall provision at any given time may comprise both landbanks of permitted reserves and allocations for future working, where these are required (see below).

Comparison with existing landbanks

The total apportionments for Pembrokeshire and the National Park, as calculated in Table 5.1 of the main document, over the 25-year horizon covered by the First Review of the RTS are 7.26 million tonnes for land-won sand & gravel (shared with Carmarthenshire and Ceredigion) and 21 million tonnes for crushed rock (for Pembrokeshire and the National Park only). These figures compare with existing landbanks (excluding dormant sites) of 4.32 million tonnes for sand & gravel (between the four authorities) and 35 million tonnes for crushed rock (as at 31st December 2010).

Allocations required to be identified in the Local Development Plan

Unless new permissions have been granted since December 2010 to address the resulting sand & gravel shortfall, new allocations totalling at least 2.94 million tonnes will need to be identified within the LDPs of one or more of the four authorities over which the apportionment is shared.

Paragraph 49 of MTAN1 notes that landbanks are not required to be maintained within National Parks or Areas of Outstanding Natural Beauty. For this reason, allocations will not be required within the National Park unless no environmentally acceptable alternatives can be found within Pembrokeshire, Ceredigion or Carmarthenshire, or from the increased use of alternative aggregates, particularly from marine sources.

In view of the surplus of existing permitted crushed rock reserves, no further allocations for crushed rock are required to be identified within the joint LDP. However, consideration
should be given to whether any of the factors set out in paragraph B75 above give rise to any other requirements for resource allocations.

As far as possible, any land-based allocations should be identified as Specific Sites or, failing that, as Preferred Areas. If, as a last resort, it is only possible to identify broad Areas of Search, these should be sufficient to offer the potential of much greater quantities of reserves, in order to reflect the uncertainties involved.

Treatment of Dormant sites

A total of three dormant limestone quarries (two in Pembrokeshire and one in the National Park) exist within this area, as detailed in Table B5, above. The planning authorities should assess the likelihood of each of these sites being worked within the Plan period, subject to the completion of an initial review of planning conditions and submission of an Environmental Impact Assessment. Where there is a likelihood of reactivation, and where the site(s) in question are considered by the authority to conform to the definition of ‘Specific Sites’, as set out in paragraph 14 of Minerals Planning Policy Wales, they may be identified in the LDP as allocations for future working.

Use of alternative aggregates

The whole of this area lies within a 30 mile radius of Pembroke Docks, where marine aggregates are landed from dredging in the outer Bristol Channel. The northern part of the area is in closer proximity to land-based sand & gravel sites within the National Park, located to the south-west of Cardigan. However, as noted above, as the current permitted reserves at those sites are depleted, marine aggregates may need to provide a greater contribution in future years.

Slate waste is produced in very small quantities in the northern part of the National Park although the extent to which this has hitherto been utilised as aggregate is understood to be minimal, and the prospects for future utilisation would seem to be equally limited.

Recycled aggregate production from construction, demolition and excavation wastes is likely to be concentrated within the various small towns of southern Pembrokeshire, outside the National Park.

The residual requirements for primary land-won aggregates assume that all of these alternative materials will continue to be utilised and the authority should continue to encourage this.

Safeguarding of primary aggregate resources

Resources of both crushed rock aggregates and land-based sand & gravel should be safeguarded within the LDP in accordance with the British Geological Survey’s safeguarding maps, or such other geological information as may be available and suitable for this purpose.

Safeguarding of wharves and railheads

All existing and potential new wharves and railheads should be identified for safeguarding within the LDP, in order to provide a full range of sustainable transport options (whether or not they are currently utilised).